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Graph Metrics
Measures of integration were as followed. Global Characteristic Path Length is the average shortest path between any two nodes in the network. Shortest path is defined by the least number of edges it takes to travel from one node to another. The same metric can be computed locally  by averaging the shortest path of a specific node to all other nodes in the network. Global Efficiency  is defined by the average inverse shortest path between any two nodes and can be computed locally using the same definition by treating the neighborhood of each node as a sub-network. 
Segregation can be quantified by the following metrics. Local Clustering Coefficient  is calculated by taking the fraction of a node’s neighbors (nodes that are connected by edges to the examined node) that are neighbors of each other to all neighbors. It can also be defined by the number of triangles that a node forms with its neighbors divided by the total number of possible triangles between them. To calculate it globally, the normalized Clustering Coefficient  of all the nodes are used. Thus, high global clustering coefficient represents a network consisting of many modules. The formulation for global clustering coefficients leads to each node being normalized by its own nodal degree. This will mean nodes with low nodal degree will have a higher contribution to the overall clustering coefficient. Transitivity  is a measure of segregation designed to minimize the influence of nodal degree by normalizing all individual clustering coefficients at the same time.
[bookmark: __Fieldmark__23018_1075263788][bookmark: __Fieldmark__21410_1075263788]One of the metrics that captures the topology of a network is Small-Worldness . Small-world networks are characterized by low characteristic path lengths and high clustering coefficients hinting at high modularity and efficiency. To quantify Small-Worldness, the ratio of the Clustering Coefficient of the network to that of a random network with the same number of nodes is divided by the ratio of the Characteristic Path Length of the network to that of the same random network. In this study, a metric called Small World Propensity was calculated which quantifies small-wordless without dependency on graph density (Muldoon, Bridgeford, and Bassett 2016). 
Finally, several centrality measures were calculated. Betweenness Centrality is local metric counting the number of shortest paths of the network that go through a node . Within Module Z-score  is another local measure of centrality. It quantifies the centrality of each node within its own subnetwork or module. Participation Coefficient  quantifies the centrality of a node in a module to that of the nodes in another module. Thus, a node with high within module Z-score is an important node for within module information flow while a high participation coefficient signifies importance in between module communications. Finally, Eigenvector  centrality is another measure of a nodes “hubness” which was studied in this investigation. 

Connectivity measures
[bookmark: __Fieldmark__22939_1075263788][bookmark: __Fieldmark__21222_1075263788]Pearson’s Product Moment Correlation is one of the most widely used measure of functional connectivity in medical research (Mukaka 2012). It attempts to fit a line through the data of two variables and the coefficient r denotes how well this line fits the data by measuring how far the data points are relative to the line. This leaves Pearson correlation to be susceptible to extreme values.
Spearman’s Rank Correlation Coefficient measures whether the two variables have a monotonic relationship or not. If the value of one variable increases (decreases) and at the same time an increase (decrease) of the other variable’s value is observed, their relationship is considered monotonic. Thus, Spearman correlation is less influenced by extreme values and can perform correctly in case of their presence.
[bookmark: __Fieldmark__22950_1075263788][bookmark: __Fieldmark__21246_1075263788][bookmark: __Fieldmark__22959_1075263788][bookmark: __Fieldmark__21253_1075263788]The Percentage-Bend Correlation is another proposed method to alleviate the shortcoming of Pearson’s Correlation on datasets with extreme marginal values (Wilcox 1994). First, the top x percentage of values deviating from the median are down-weighted. This ensures that there are fewer extreme marginal values present in the data. Then a normal Pearson correlation is calculated for the altered data. For this research, we chose the percentage to be 20% in accordance to a previous study (Pernet, Wilcox, and Rousselet 2012).
[bookmark: __Fieldmark__22967_1075263788][bookmark: __Fieldmark__21267_1075263788]A shortcoming of all previous methods is that they only consider one pair of brain regions at any given time. Each of these regions can be affected by other brain regions at any given time which can lead to a higher or lower correlation score than if the two regions were isolated. Partial Correlation addresses this problem by considering the effect of other ROIs on the examined regions. A simple way to calculate Partial Correlation is by eliminating any outside effects using linear regression. However, this will be very computationally expensive as the task will have to be repeated for each pair of variables. In practice, it is calculated by using the inverse covariance matrix (Marrelec et al. 2006). 
Sparse Inverse Covariance Estimation (SICE) is a direct progression from partial correlation that expands its usefulness to smaller datasets (Huang et al. 2010).
Finally, Mutual Information is an information theory metric that quantifies how much information we can learn about a variable using another variable.
We used the GraphVar toolbox implementations to calculate each of the mentioned connectivity measures (Kruschwitz et al. 2015)


Supplementary Table A. Showing the age mean-standard deviation as well as the number of subjects for each diagnostic group in each site for each age-range. SD: Standard Deviation, nan means that it could not be computed
	Age range
	Site
	Group
	AGE mean|sd
	Count

	5, 10
	KKI
	ASD
	8.29 | 0.16
	6

	
	
	HC
	9.34 | 0.53
	14

	
	MAXMUND
	HC
	8.50 | 2.12
	2

	
	NYU
	ASD
	8.68 | 1.00
	19

	
	
	HC
	8.32 | 0.89
	16

	
	OHSU
	ASD
	9.22 | 0.82
	4

	
	
	HC
	9.01 | 0.75
	3

	
	SDSU
	HC
	8.67 | nan
	1

	
	STANFORD
	ASD
	8.78 | 0.78
	9

	
	
	HC
	8.81 | 0.61
	12

	
	UCLA1
	ASD
	8.88 | 0.54
	2

	
	
	HC
	9.50 | nan
	1

	
	UCLA2
	HC
	9.79 | nan
	1

	
	UM1
	ASD
	9.57 | 0.25
	4

	
	
	HC
	9.40 | 0.68
	5

	
	YALE
	ASD
	8.17 | 1.23
	4

	
	
	HC
	8.90 | 0.81
	6

	10, 15
	KKI
	ASD
	10.82 | 0.69
	6

	
	
	HC
	11.05 | 0.85
	12

	
	LEUVEN2
	ASD
	13.68 | 1.01
	12

	
	
	HC
	13.39 | 0.91
	12

	
	MAXMUND
	ASD
	11.00 | 0.00
	3

	
	
	HC
	11.00 | nan
	1

	
	NYU
	ASD
	12.39 | 1.54
	29

	
	
	HC
	12.45 | 1.38
	37

	
	OHSU
	ASD
	12.15 | 1.45
	7

	
	
	HC
	10.88 | 0.69
	8

	
	OLIN
	ASD
	12.80 | 1.64
	5

	
	
	HC
	14.50 | 0.58
	4

	
	PITT
	ASD
	13.11 | 0.95
	9

	
	
	HC
	13.10 | 1.02
	7

	
	SDSU
	ASD
	13.34 | 0.90
	5

	
	
	HC
	13.87 | 0.86
	12

	
	STANFORD
	ASD
	11.70 | 0.60
	8

	
	
	HC
	11.74 | 0.91
	7

	
	TRINITY
	ASD
	13.58 | 0.82
	6

	
	
	HC
	13.82 | 1.09
	8

	
	UCLA1
	ASD
	12.56 | 1.61
	17

	
	
	HC
	13.02 | 1.19
	21

	
	UCLA2
	ASD
	11.76 | 1.32
	7

	
	
	HC
	12.63 | 0.64
	11

	
	UM1
	ASD
	12.78 | 1.25
	22

	
	
	HC
	12.29 | 1.46
	20

	
	UM2
	ASD
	13.82 | 0.80
	6

	
	
	HC
	14.13 | 0.62
	7

	
	USM
	ASD
	11.84 | 0.69
	2

	
	
	HC
	13.04 | 1.90
	4

	
	YALE
	ASD
	12.76 | 1.25
	12

	
	
	HC
	12.87 | 1.45
	14

	15, 20
	CALTECH
	ASD
	17.50 | nan
	1

	
	
	HC
	19.35 | 0.92
	2

	
	LEUVEN1
	ASD
	19.00 | 0.58
	7

	
	
	HC
	18.00 | nan
	1

	
	LEUVEN2
	ASD
	15.30 | nan
	1

	
	
	HC
	15.93 | 0.75
	6

	
	MAXMUNA
	ASD
	19.00 | nan
	1

	
	MAXMUND
	ASD
	18.00 | nan
	1

	
	NYU
	ASD
	16.96 | 1.58
	8

	
	
	HC
	16.97 | 1.41
	18

	
	OHSU
	ASD
	15.23 | nan
	1

	
	OLIN
	ASD
	18.00 | 1.53
	7

	
	
	HC
	17.50 | 1.73
	4

	
	PITT
	ASD
	16.99 | 0.00
	2

	
	
	HC
	16.24 | 1.26
	2

	
	SDSU
	ASD
	16.14 | 0.55
	4

	
	
	HC
	15.97 | 0.62
	5

	
	TRINITY
	ASD
	17.17 | 1.70
	11

	
	
	HC
	17.72 | 1.68
	9

	
	UCLA1
	ASD
	16.66 | 0.93
	9

	
	
	HC
	16.45 | 1.26
	5

	
	UCLA2
	ASD
	16.47 | nan
	1

	
	UM1
	ASD
	16.45 | 1.12
	10

	
	
	HC
	17.26 | 1.20
	21

	
	UM2
	ASD
	16.28 | 0.76
	6

	
	
	HC
	16.74 | 1.04
	10

	
	USM
	ASD
	17.69 | 1.01
	13

	
	
	HC
	17.66 | 1.52
	8

	
	YALE
	ASD
	16.74 | 0.62
	6

	
	
	HC
	16.34 | 0.91
	6

	20, 30
	CALTECH
	ASD
	22.12 | 3.91
	5

	
	
	HC
	23.99 | 3.31
	7

	
	CMUA
	ASD
	22.00 | nan
	1

	
	LEUVEN1
	ASD
	23.50 | 2.88
	6

	
	
	HC
	23.64 | 2.62
	14

	
	MAXMUNA
	ASD
	27.50 | 2.12
	2

	
	
	HC
	23.00 | nan
	1

	
	MAXMUNB
	ASD
	29.50 | 0.71
	2

	
	MAXMUNC
	ASD
	22.00 | nan
	1

	
	
	HC
	25.75 | 3.05
	12

	
	NYU
	ASD
	24.06 | 2.97
	13

	
	
	HC
	23.46 | 2.77
	21

	
	OLIN
	ASD
	22.50 | 2.12
	2

	
	
	HC
	21.67 | 1.15
	3

	
	PITT
	ASD
	21.16 | 0.46
	2

	
	
	HC
	22.94 | 1.98
	5

	
	SBL
	ASD
	30.00 | nan
	1

	
	
	HC
	26.50 | 0.71
	2

	
	TRINITY
	ASD
	21.71 | 0.98
	4

	
	
	HC
	22.45 | 2.61
	5

	
	UM2
	HC
	27.80 | 1.41
	2

	
	USM
	ASD
	24.93 | 3.00
	14

	
	
	HC
	26.28 | 2.18
	8

	30, 65
	CALTECH
	ASD
	46.55 | 12.52
	2

	
	
	HC
	46.00 | 8.98
	3

	
	LEUVEN1
	ASD
	32.00 | nan
	1

	
	MAXMUNA
	ASD
	39.00 | 8.49
	2

	
	
	HC
	35.00 | 6.16
	5

	
	MAXMUNB
	ASD
	46.00 | 11.43
	4

	
	MAXMUNC
	HC
	35.00 | nan
	1

	
	MAXMUND
	ASD
	40.00 | 7.07
	2

	
	NYU
	ASD
	38.93 | 0.24
	2

	
	
	HC
	30.88 | 0.85
	3

	
	PITT
	ASD
	33.31 | 1.54
	4

	
	
	HC
	33.17 | nan
	1

	
	SBL
	ASD
	47.50 | 23.33
	2

	
	
	HC
	38.67 | 3.06
	3

	
	USM
	ASD
	36.89 | 5.91
	9

	
	
	HC
	36.64 | 4.64
	3





Supplementary Table B1. Selected features for age range 5-10 years and previous studies reporting structural or functional changes for that region
	Pipeline
	Graph Metric
	Region
	Abbreviation
	p-value

	Spearman
	Clustering Coefficient
	Inferior parietal, but supramarginal and angular gyri
	IPL.L
	0.0368089

	Covariance
	Within-module degree z-score
	Amygdala (Right)
	AMYG.R
	0.028559

	Spearman
	Clustering Coefficient
	Inferior frontal gyrus, triangular part (Left)
	IFGtriang.L
	0.0159884

	Mutual information
	Characteristic path Length
	Precuneus (Left)
	PCUN.L
	0.000668882

	Covariance
	Clustering Coefficient
	Posterior cingulate gyrus (Right)
	PCG.R
	0.025256

	Spearman
	Efficiency
	Cerebelum_6_L
	CRBL6.L
	0.243076

	Covariance
	Betweenness Centrality
	Cerebelum_7b_R
	CRBL7b.R
	0.906727

	Covariance
	Clustering Coefficient
	Precentral gyrus (Left)
	PreCG.L
	0.355829

	Mutual information
	Efficiency
	Precentral gyrus (Left)
	PreCG.L
	0.0209225

	Partial
	Within-module degree z-score
	Lenticular nucleus, putamen (Left)
	PUT.L
	0.118273




Supplementary Table B2. Selected features for age range 10-15 years and previous studies reporting structural or functional changes for that region
	Pipeline
	Graph Metric
	Region
	Abbreviation
	p-value

	Covariance
	Betweenness Centrality
	Fusiform gyrus (Left)
	FFG.L
	0.0257671

	Covariance
	Betweenness Centrality
	Temporal pole: middle temporal gyrus (Right)
	TPOmid.R
	0.00416598

	Mutual information
	Efficiency
	Temporal pole: middle temporal gyrus (Left)
	TPOmid.L
	0.912742

	Bend
	Betweenness Centrality
	Superior frontal gyrus, orbital part (Right)
	ORBsup.R
	0.542448

	Partial
	Betweenness Centrality
	Median cingulate and paracingulate gyri (Right)
	DCG.R
	0.143617

	Covariance
	Within-module degree z-score
	Middle occipital gyrus (Right)
	MOG.R
	0.0776933

	Partial
	Characteristic path Length
	Cerebelum_10_L
	CRBL10.L
	0.387885

	Mutual information
	Clustering Coefficient
	Vermis_4_5
	Vermis45
	0.916132

	Partial
	Within-module degree z-score
	Vermis_6
	Vermis6
	0.533312

	Covariance
	Participation Coefficient
	Fusiform gyrus (Right)
	FFG.R
	0.260798





Supplementary Table B3. Selected features for age range 15-20 years and previous studies reporting structural or functional changes for that region
	Pipeline
	Graph Metric
	Region
	Abbreviation
	p-value

	Spearman
	Characteristic path Length
	Heschl gyrus (Left)
	HES.L
	7.15E-05

	Spearman
	Clustering Coefficient
	Angular gyrus (Right)
	ANG.R
	0.000167317

	Spearman
	Eigenvector Centrality
	Superior frontal gyrus, dorsolateral (Right)
	SFGdor.R
	0.273987

	Spearman
	Eigenvector Centrality
	Inferior frontal gyrus, opercular part (Right)
	IFGoperc.R
	0.486142

	Spearman
	Eigenvector Centrality
	Superior frontal gyrus, medial (Left)
	SFGmed.L
	0.423809

	Spearman
	Eigenvector Centrality
	Cuneus (Left)
	CUN.L
	0.145407

	Spearman
	Within-module degree z-score
	Thalamus (Right)
	THA.R
	0.0300153

	Spearman
	Clustering Coefficient
	Vermis_7
	Vermis7
	0.607888

	Spearman
	Within-module degree z-score
	Cerebelum_6_R
	CRBL6.R
	0.00123175

	Spearman
	Characteristic path Length
	Superior temporal gyrus (Right)
	STG.R
	0.256614





Supplementary Table B4. Selected features for age range 20-30 years and previous studies reporting structural or functional changes for that region
	Pipeline
	Graph Metric
	Region
	Abbreviation
	p-value

	Mutual Information
	Within-module degree z-score
	Parahippocampal gyrus (Left)
	PHG.L
	0.154213

	Mutual Information
	Within-module degree z-score
	Superior frontal gyrus, dorsolateral (Left)
	SFGdor.L
	0.0145346

	Mutual Information
	Participation Coefficient
	Cerebelum_7b_L
	CRBL7b.L
	0.00953836

	Mutual Information
	Betweenness Centrality
	Cerebelum_3_R
	CRBL3.R
	0.172049

	Mutual Information
	Characteristic path Length
	Inferior temporal gyrus (Right)
	ITG.R
	0.153338

	Mutual Information
	Betweenness Centrality
	Superior occipital gyrus (Left)
	SOG.L
	0.767554

	Mutual Information
	Efficiency
	Angular gyrus (Right)
	ANG.R
	0.499045

	Mutual Information
	Efficiency
	Anterior cingulate and paracingulate gyri (Left)
	ACG.L
	0.394514

	Mutual Information
	Within-module degree z-score
	Precuneus (Right)
	PCUN.R
	0.958967

	Mutual Information
	Within-module degree z-score
	Postcentral gyrus (Right)
	PoCG.R
	0.761263





Supplementary Table B5. Selected features for age range >30 years and previous studies reporting structural or functional changes for that region
	Pipeline
	Graph Metric
	Region
	Abbreviation
	p-value

	Covariance
	Characteristic path Length
	Temporal pole: middle temporal gyrus (Left)
	TPOmid.L
	0.00124389

	Covariance
	Eigenvector Centrality
	Superior frontal gyrus, orbital part (Right)
	ORBsup.R
	0.871748

	Covariance
	Betweenness Centrality
	Hippocampus (Left)
	HIP.L
	0.0330782

	Covariance
	participation_coefficient2
	Cerebelum_Crus2_L
	CRBLCrus2.L
	0.504822

	Covariance
	Within-module degree z-score
	Middle temporal gyrus (Right)
	MTG.R
	0.146737

	Covariance
	Betweenness Centrality
	Middle occipital gyrus (Right)
	MOG.R
	0.20807

	Covariance
	Eigenvector Centrality
	Insula (Right)
	INS.R
	0.922012

	Covariance
	Efficiency 
	Cerebelum_10_L
	CRBL10.L
	0.261675

	Covariance
	Betweenness Centrality
	Amygdala (Right)
	AMYG.R
	0.135061

	Covariance
	Global Characteristic Path Length
	
	
	0.474429



Huang, Shuai, Jing Li, Liang Sun, Jieping Ye, Adam Fleisher, Teresa Wu, Kewei Chen, and Eric Reiman. 2010. “Learning Brain Connectivity of Alzheimer’s Disease by Sparse Inverse Covariance Estimation.” NeuroImage 50 (3): 935–49. https://doi.org/10.1016/j.neuroimage.2009.12.120.
[bookmark: _GoBack]Kruschwitz, J D, D List, L Waller, M Rubinov, and H Walter. 2015. “GraphVar: A User-Friendly Toolbox for Comprehensive Graph Analyses of Functional Brain Connectivity.” Journal of Neuroscience Methods 245: 107–15. https://doi.org/10.1016/j.jneumeth.2015.02.021.
Marrelec, Guillaume, Alexandre Krainik, Hugues Duffau, Mélanie Pélégrini-Issac, Stéphane Lehéricy, Julien Doyon, and Habib Benali. 2006. “Partial Correlation for Functional Brain Interactivity Investigation in Functional MRI.” https://doi.org/10.1016/j.neuroimage.2005.12.057.
Mukaka, M M. 2012. “Statistics Corner: A Guide to Appropriate Use of Correlation Coefficient in Medical Research Definitions of Correlation and Clarifications.” Malawi Medical Journal 24 (3): 69–71. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3576830/pdf/MMJ2403-0069.pdf.
Muldoon, Sarah Feldt, Eric W. Bridgeford, and Danielle S. Bassett. 2016. “Small-World Propensity and Weighted Brain Networks.” Scientific Reports 6 (1): 22057. https://doi.org/10.1038/srep22057.
Pernet, Cyril R, Rand Wilcox, and Guillaume A Rousselet. 2012. “Robust Correlation Analyses: False Positive and Power Validation Using a New Open Source Matlab Toolbox.” Frontiers in Psychology 3. Frontiers Media SA: 606. https://doi.org/10.3389/fpsyg.2012.00606.
Wilcox, Rand R. 1994. “The Percentage Bend Correlation Coefficient.” Psychometrika 59 (4). Springer-Verlag: 601–16. https://doi.org/10.1007/BF02294395.

image1.jpeg
’ frontiers




