
Supplementary Material

S1 Text

The space-free model.

The space-free model presented in the main text is a three-type Moran model with mutation
probabilities u, v, 0 6 u, v < 1 in which the offspring of a cell can replace any other cell.
Formally, the model is a Markov process (Xt)t>0 on the state space S = {0, 1, 2, ..., N,E}
where 1, . . . , N represent the number of benign cells in the population when no malignant cell
is present and state E represents the existence of a malignant tumor cell. The dynamics is
determined by the rate matrix Q = (q(k, l))k,l∈S with

q(k, l) =



Nu, k = 0, l = 1,
(N−k)k

N
(1− v) + (N−k)(N−k−1)u

N
, 1 6 k 6 N − 1, l = k + 1,

(N−k)k(1−u)
N

, 1 6 k 6 N − 1, l = k − 1,

kv, 1 6 k 6 N − 1, l = E,

−
∑
m∈S
m 6=k

q(k,m), l = k,

0, else.

(1)

The rate q(k, k+1) for an increase of the state is composed as follows. There are two possibilities
for such an increase. First, the offspring of a benign cell can replace a wild-type cell. Since
there are N − k wild-type cells within the population, the rate to choose one of them is N − k.
The probability that a benign cell is selected for reproduction is k

N
and the offspring does not

undergo a mutation with probability 1− v. This yields a rate of (N − k) · k
N
· (1− v). Second,

the state can also increase by a reproduction of a benign cell with subsequent mutation of the
offspring which replaces a wild-type cell. The rate for this event is given by (N − k)u · N−k−1

N
.

The sum of the rates for both possibilities yields the entry in (1) and the other rates are similarly
obtained.
The states N and E are absorbing states of the process since q(N, l) = q(E, l) = 0 for l ∈ S.
By assuming

Nu� 1, (2)

i.e. that mutations to benign cells are rare such that each arising benign cell mutant can be
investigated independently [1], we derived in [2] the absorption probability of this process in state
N . This derivation utilizes first step analysis in order to obtain a linear system of equations for
the absorption probabilities starting with k, 1 6 k 6 N, type-I cells. Subsequently, Cramer’s
rule allows to derive the particular absorption probability starting with one type-I mutant. We
obtained an exact solution for finite values of N and also an asymptotic result by taking the
limit for N →∞ which reads

α(γ) =
1

I0(2
√
γ)
, (3)
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where γ := N
√
v and In, n ∈ N0, denote the modified Bessel functions of the first kind,

see [3]. For the rigorous derivation of this result, see the Supplementary Material in [2].

A B

Moran dynamics with different spatial cell arrangements. In the Moran dynamics, a
randomly chosen cell proliferates (blue circle) and replaces a neighboring cell which undergoes
cell death (red circle). In A, the space-free dynamics is illustrated, i.e. each cell can be
replaced by any other cell. In B, only neighboring cells can be replaced representing a
one-dimensional cell arrangement. (Reprint of Fig. 2 in the main text)

The one-dimensional model.

The one-dimensional model presented in the main text is a spatial three-type Moran model
with mutation probabilities u, v, 0 6 u, v < 1 in which each cell can only be replaced by the
offspring of the two neighboring cells. For the analysis, we assume that

Nu� 3
√
v (4)

and define the 1D risk coefficient γ1D as

N 3
√
v =: γ1D. (5)

Analogously to (2), assumption (4) guarantees that mutations to benign cells are rare such
that each arising benign cell mutant can be investigated independently, see [1]. Hence, for the
analysis we can neglect mutations to benign cells if the system is already in a state k > 0. We
only consider the last benign mutant which eventually leads to absorption in states N or E.
Therefore, we study a modified process with u = 0 conditioned that this benign clone will not
go extinct. Note that if there are any benign cells in the system, then there is always exactly
one connected benign cell population.
Formally, this modified one-dimensional model is a Markov process on the state space S =
{1, 2, 3, ...., N,E}, where 1, . . . , N represent the number of benign cells in the population when
no malignant cell is present and state E represents the existence of a malignant tumor cell, and
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rate matrix Q = (q(k, l))k,l∈S which reads

q(k, l) =



1− v, 1 6 k 6 N − 1, l = k + 1,

1, 2 6 k 6 N − 1, l = k − 1,

kv, 1 6 k 6 N − 1, l = E,

−
∑
m∈S̃
m6=k

q(k,m), l = k,

0, else.

(6)

The rate q(k, k+1) for an increase of the state is composed as follows. For an increase of the
state, the offspring of a benign cell must replace a wild-type cell.

• If k = 1, i.e. there is only one benign cell in the system, then exactly this cell has to
be selected to reproduce. The neighboring cell that is replaced is always a wild-type cell.
However, during reproduction, there must not be a mutation which implies a rate of 1−v.

• If k > 1, then only the two benign cells at the boundary of the connected benign cell
population have to be selected for reproduction since otherwise the offspring would replace
a benign cell. One of them is selected with rate 2. The chosen cell has two neighbors,
a benign and a malignant cell. Thus, the wild-type cell is chosen to be replaced with
probability 1

2
. Finally, the offspring of the benign cell must not undergo a mutation which

holds with a probability of 1−v. Hence, the offspring of a benign cell replaces a wild-type
cell with rate 2 · 1

2
· (1− v) = 1− v.

The other rates in (6) are similarly obtained. The states N and E are absorbing states of the
process since q(N, l) = q(E, l) = 0 for l ∈ S. Note that a discrete-time version of this process
has been first introduced in [4].

Derivation of the absorption probabilites. For the rates (6) we set q(k) := −q(k, k) and
get

q(1) = q(1, E) + q(1, 2) = 1,

q(N) = q(E) = 0,

q(k) = q(k, k + 1) + q(k, k − 1) + q(k,E) = 2 + v(k − 1), 2 6 k 6 N − 1.

We further regard the embedded Markov chain with transition probabilities

p(i, j) =


q(i,j)
q(i)

, i 6= j,

1, i = j = E,

1, i = j = N,

0, else,
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in which the entries unequal to 0 look as follows

p(1, E) = v,

p(1, 2) = 1− v,

p(k,E) =
kv

2 + v(k − 1)
, 2 6 k 6 N − 1,

p(k, k + 1) =
1− v

2 + v(k − 1)
, 2 6 k 6 N − 1,

p(k, k − 1) =
1

2 + v(k − 1)
, 2 6 k 6 N − 1,

p(N,N) = p(E,E) = 1.

The absorption probabilities for the underlying stochastic process with transition matrix P =(
pi,j
)
i,j∈S is obtained as follows. Denote by αN1D =

(
αN1D(i, v)

)
i∈S the absorption probabilities

where αN1D(i, v) describes the absorption probability in state N starting from state i.
First step analysis yields

αN1D(i, v) =
∑
j∈S

p(i, j)αN1D(j, v), i ∈ S.

It holds that αN1D(E, v) = 0, αN1D(N, v) = 1 and therefore

αN1D(i, v) =
N∑
j=1

p(i, j)αN1D(j, v)

=
N−1∑
j=1

p(i, j)αN1D(j, v) + p(i, N)

=


(1− v)αN1D(2, v), i = 1

1
2+v(i−1)α

N
1D(i− 1, v) + 1−v

2+v(i−1)α
N
1D(i+ 1, v), 2 6 i 6 N − 2,

1
2+v(N−2)α

N
1D(N − 2, v) + 1−v

2+v(N−2) , i = N − 1.

Hence,

−αN1D(1, v) + (1− v)αN1D(2, v) = 0

1

2 + v(i− 1)
αN1D(i− 1, v)− αN1D(i, v) +

1− v
2 + v(i− 1)

αN1D(i+ 1, v) = 0, 2 6 i 6 N − 2,

1

2 + v(N − 2)
αN1D(N − 2, v)− αN1D(N − 1, v) = − 1− v

2 + v(N − 2)
.
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By multiplying each equation with the corresponding denominator, one gets an equivalent
system P

′
N α̃

N
1D = b for a (N − 1)× (N − 1) matrix P

′
N and α̃N1D :=

(
αN1D(i, v)

)
i=1,...,N−1. This

system reads in tableau form as follows.

αN
1D(1,v) αN

1D(2,v) αN
1D(3,v) ... ... αN

1D(N−1,v) 1

1 −1 1− v 0 0 · · · 0 0

2 1 −2− v 1− v 0
. . .

...
...

3 0 1 −2− 2v 1− v . . .
...

...
...

...
. . . . . . . . . . . . 0

...
...

...
. . . . . . . . . . . . 1− v 0

N−1 0 · · · · · · 0 1 −2− (N − 2)v −(1− v)

(7)

Cramer’s rule can be applied to derive the absorption probability in state N starting with a
single type-1 cell, i.e.

αN1D(1, v) =
det P̃

′
N

detP
′
N

,

where P̃
′
N is the matrix formed by replacing the first column of P

′
N by the column vector b.

By applying Laplace expansion along the last column of P
′
N we obtain

detP
′

N = (−1)2N−2(−2− (N − 2)v) detP
′

N−1

+ (−1)2N−3(1− v)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 1− v 0 0 · · · 0

1 −2− v 1− v 0
. . .

...

0 1 −2− 2v 1− v . . .
...

...
. . . . . . . . . . . . 0

...
. . . 0 1 −2− (N − 4)v 1− v

0 · · · · · · · · · 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−2− (N − 2)v) detP

′

N−1 − (1− v) · (−1)2N−4 · 1 · detP ′

N−2

= (−2− (N − 2)v) detP
′

N−1 − (1− v) detP ′

N−2,

where the determinant in the first equality was evaluated by applying Laplace expansion
along the last row. The result of these calculations is a second order difference equation with
non-constant coefficients which reads as follows.

detP
′

N = (−2− (N − 2)v) detP
′

N−1 − (1− v) detP ′

N−2, N > 4,

detP
′

3 = 2v + 1,

detP
′

2 = −1. (8)
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Since the mutation rate v can be considered close to zero we can assume that (1− v) is close
to one and obtain the modified equation

DN = (−2− (N − 2)v)DN−1 −DN−2, D3 = 2v + 1, D2 = −1, N > 4. (9)

This modified difference equation can be solved and the solution can be simplified with Math-
ematica [5] which yields

DN =
(−1)N+1π

v

JN+ 2
v

(
2

v

)(
(2v + 1)Y1+ 2

v

(
2

v

)
− Y2+ 2

v

(
2

v

))

+YN+ 2
v

(
2

v

)(
J2+ 2

v

(
2

v

)
− (2v + 1)J1+ 2

v

(
2

v

)) . (10)

Here, J denotes a Bessel function of the first kind and Y denotes a Bessel function of
the second kind, see [3]. We will use the solution DN of the modified difference equation as
approximation for detP

′
N .

The determinant of P̃
′
N is calculated as follows. The matrix P̃

′
N is given by

P̃
′

N =



0 1− v 0 · · · · · · 0

0 −2− 2v 1− v 0
. . . 0

0 1 −2− 2v 1− v . . .
...

...
. . . . . . . . . . . .

...

0
. . . . . . . . . . . . 1− v

−(1− v) 0 · · · · · · 1 −2− (N − 2)v


.

Therefore, the determinant can be calculated by applying Laplace expansion along the first
column and evaluating the determinant of the remaining triangular matrix, i.e.

det P̃
′

N = (−1)N · (−(1− v))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1− v 0 · · · · · · · · · 0

−2− 2v 1− v 0
. . . . . . 0

1 2− 2v 1− v . . . . . .
...

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0

0 · · · . . . . . . . . . 1− v

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)N+1 · (1− v)N−1. (11)

Using this result and the approximation derived in equation (10) allows the approximation of
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the absorption probability αN1D(1, v) with Cramer’s rule

αN1D(1, v) ≈
det P̃

′
N

DN
=

v(1− v)N−1

π

(
JN+ 2

v

(
2
v

)(
(2v + 1)Y1+ 2

v

(
2
v

)
− Y2+ 2

v

(
2
v

))
+ YN+ 2

v

(
2
v

)(
J2+ 2

v

(
2
v

)
− (2v + 1)J1+ 2

v

(
2
v

))) .
(12)
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S2 Table

Comparison of the approximate solution and simulation results of the 1D model.

N v simulated absorption prob. α̂N(1, v) αN(1, v) deviation

10 0.0015 0.7931 0.8226 0.0295
10 0.001 0.8541 0.8761 0.0220
10 0.0001 0.9837 0.9864 0.0027
10 0.00001 0.9984 0.9986 0.0002
10 0.000001 0.9998 0.9999 0.0001
10 0.0000001 1 1 0
50 0.0015 0.0004 0.0004 0
50 0.001 0.0019 0.0022 0.0003
50 0.0001 0.2428 0.2568 0.0140
50 0.00001 0.8216 0.8299 0.0083
50 0.000001 0.9795 0.9806 0.0011
50 0.0000001 0.9979 0.9980 0.0001

100 0.001 0 0 0
100 0.0001 0.0040 0.0044 0.0004
100 0.00001 0.3025 0.3105 0.0080
100 0.000001 0.8530 0.8567 0.0037
100 0.0000001 0.9836 0.9840 0.0004
100 0.00000001 0.9983 0.9984 0.0001
500 0.0001 0 0 0
500 0.00001 0 0 0
500 0.000001 0.0019 0.0019 0
500 0.0000001 0.2429 0.2444 0.0015
500 0.00000005 0.4389 0.4407 0.0018
750 0.000001 0 0 0
750 0.0000001 0.0385 0.0388 0.0003
750 0.00000005 0.1276 0.1283 0.0007
750 0.00000001 0.5531 0.5542 0.0011

1000 0.000001 0 0 0
1000 0.0000001 0.0040 0.0041 0.0001
1000 0.00000005 0.0266 0.0268 0.0002
1000 0.00000001 0.3025 0.3034 0.0009

Comparison of the analytical approximation and simulation results from 10000 trajectories of
the underlying stochastic process of the one-dimensional model for the probability of
absorption in state N .
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S3 Table

Tumor progression patterns in dependency of the risk coefficients.

progression pattern space-free model 1D model

primarily sequential γ 6 0.031 γ1D 6 0.187
borderline 0.031 < γ < 4.53 0.187 < γ1D < 5.281

primarily tunneling γ > 4.53 γ1D > 5.281

This table summarizes the risk coefficient regimes with respect to the different progression
patterns of the model. Primarily sequential and primarily tunneling progression patterns refer
to a fraction of 99.9% of sequential and tunneling progression, respectively.

S4 Table

The influence of the mutation probability on the model estimates.

progression pattern v space-free model 1D model

10−5 N 6 10 N 6 8
primarily 10−6 N 6 29 N 6 17

sequential 10−7 N 6 100 N 6 39

10−5 10 < N 6 1408 8 < N 6 245
both sequential 10−6 29 < N 6 4530 17 < N 6 528
and tunneling 10−7 100 < N 6 14080 40 < N 6 1138

10−5 N > 1408 N > 245
primarily 10−6 N > 4530 N > 528
tunneling 10−7 N > 14080 N > 1138

This table summarizes regimes for the parameter N with respect to the different progression
patterns of the models in dependency of the mutation probability v. Primarily sequential and
primarily tunneling progression patterns refer to a fraction of 99.9% of sequential and
tunneling progression, respectively.

9



S5 Figure

The absorption probability in the 1D model in dependency of γ1D.
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● ● ● ● ● ●γ1D = 0.5 γ1D = 1 γ1D = 1.5 γ1D = 2 γ1D = 2.5 γ1D = 3 simulations

v

We numerically approximated the absorption probability in state N for different values of N
and v such that the risk coefficient γ1D is constant. This analysis suggests that the absorption
probability solely depends on the risk coefficient γ1D for approximately N > 40. The squares
indicate the results of simulation studies of the absorption probability in state N and therefore
the benign tumor fraction in the model.
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