
WAVE TURBULENCE AND ENERGY CASCADE IN THE HIPPOCAMPUS
SUPPLEMENTARY MATERIAL

This is a summary of wave turbulence principles, abbreviated and simpli ied to retain only
the main ideas. Turbulence is a rich theory, with deep implications for the physics of large
systems, covering a wide range of topics that include hydrodynamics, plasma physics, non-
linear optics, aggregation-fragmentation processes, ocean waves, and many others. The goal
of this succinct account is to provide a possible blueprint for future investigations in to the
dynamics of mesoscale neural collective action.

1. G

Following the standard thermodynamics formalism [e.g., Callen, 1960], assume that the phys-
ical system is a one-dimensional spatial network whose mesoscopic state is completely de-
scribed by a function𝜙(𝑥, 𝑡) that represents the deviation from an appropriately chosen equi-
librium state [e.g., Wright and Liley, 1995]. Quite generally, we will assume that 𝜑 satis ies a
weakly-nonlinear, non-dissipative evolution equation that tends is linear as 𝜙 → 0, i.e.,

𝐿(𝜕𝑡, 𝜕𝑥)𝜙 = 𝑁(𝜙2), (1)
𝐿(𝜕𝑡, 𝜕𝑥)𝜙 = 0, as 𝜙 → 0. (2)

where𝐿 and𝑁 are constant-coef icient linear andnonlinear operators in𝜙 and its derivatives.
Because the nonlinearity is weak, if𝜙 is not too large, we can neglect nonlinear terms𝜙𝑚 with
𝑚 > 2. Ignoring boundary conditions, equation 1 is solved using the Fourier transform

𝜑(𝑘, 𝑡) = ∫
∞

−∞
𝜙(𝑥, 𝑡)𝑒−2𝜋𝑖𝑘𝑥𝑑𝑥, (3a)

𝜙(𝑥, 𝑡) = ∫
∞

−∞
𝜑(𝑘, 𝑡)𝑒2𝜋𝑖𝑘𝑥𝑑𝑘, (3b)

where 𝑘 is the wavenumber, and the functions 𝑒2𝜋𝑖𝑘𝑥 are orthogonal in the sense that

∫
∞

−∞
𝑒2𝜋𝑖𝑘𝑥𝑑𝑥 = 𝛿(𝑘), (4)

with 𝛿 the Dirac delta function, satisfying the sifting property ∫∞
−∞ 𝑓 (𝑥)𝛿(𝑥) = 𝑓 (0). In initesi-

mally close to the equilibrium state, substituting 𝜑(𝑘, 𝑡) = 𝐴(𝑘)𝑒−2𝜋𝑖𝑓 𝑡 into equation 2 yields
the dispersion relation between the frequency 𝑓 and wavenumber 𝑘 [Whitham, 1974]

𝐿 (𝑖𝑘, −𝑖𝑓 ) = 0, (5)
which may be solved to obtain 𝑓 = 𝑓 (𝑘). The roots of the dispersion relation 5 are called
modes. Neglecting dissipation implies that both 𝑓 and 𝑘 are real (with atmost negligible imag-
inary parts). The only assumption wemake about the dispersion relation is that the function
𝑓 (𝑘) (or 𝑘(𝑓 )) is monotonically increasing for positive wavenumbers and frequencies (higher
frequencies correspond to higher wavenumbers and smaller scales, i.e., shorter waves).
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2. D F ( )

Aplausibleway to introduce aHamiltoniandescription is as follows. Assume that the function
𝜙 may be expressed as as function of 𝑟 extensive state variables, 𝜙 = 𝜙(𝑞), where 𝑞(𝑥, 𝑡) =
(𝑞1, 𝑞2, ⋯ , 𝑞𝑟)(𝑥, 𝑡). The function 𝜙 might be related to the local electrical ield potential, and
state variables might be physical space densities that describe mesoscale activity, such as
number of neuronal iring pulses per unit network length, number of excitatory pulses re-
ceived per unit network length, and so on. If 𝜙 completely characterizes the thermodynam-
ics of the system, it determines all relevant intensive variables 𝑝(𝑥, 𝑡) = (𝑝1, 𝑝2, ⋯ , 𝑝𝑟)(𝑥, 𝑡),
through the standard thermodynamic relations

𝑝 = 𝜕𝜙
𝜕𝑞 = ( 𝜕

𝜕𝑞1
, 𝜕
𝜕𝑞2

⋯ , 𝜕
𝜕𝑞𝑟

) 𝜙. (6)

Let
𝐻(𝑝, 𝑞) = 0, (7)

be an equation of state, where 𝐻 is a function of the extensive/intensive thermodynamic pa-
rameters 𝑞 and 𝑝. Equation 7 is a partial differential equation for 𝜙 (by substitution of 𝑝 from
equation 6). One can readily verify by substitution that the solution to equation 7 is given by
the equations

𝑑𝑞
𝑑𝑡 = 𝜕𝐻;

𝜕𝑝
𝑑𝑝
𝑑𝑡 = −𝜕𝐻

𝜕𝑞 , (8)

where 𝑡 parameterizes the evolution of the system. Equations 8may be interpreted as Hamil-
ton’s canonical equations, describing the evolution of the system in the space de ined by the
generalized coordinates 𝑞 and momenta 𝑝, and subject to the constraint 𝐻 = 0, where 𝐻is
recognized as the Hamiltonian of the system [e.g., Peterson, 1979, Rajeev, 2008, Baldiotti
et al., 2016]. A change of variables (𝑝, 𝑞) that preserves the form of the canonical equations
8 is called a canonical transformation. The symmetry of the Hamiltonian description may be
used to further simplify the dynamical equations by performing two canonical transforma-
tions: the so-called Bogoliubov transformation [e.g., Zakharov et al., 1992] (𝑞(𝑥, 𝑡), 𝑝(𝑥, 𝑡)) →
(𝐴(𝑥, 𝑡), 𝐴∗(𝑥, 𝑡))

𝐴 = 𝑞
√2Λ

+ 𝑖Λ𝑝
√2

; 𝐴∗ = 𝑞
√2Λ

+ 𝑖Λ𝑝
√2

, (9)

where the constantΛ is used to bring the variables 𝑞 and 𝑝 to the samephysical units, followed
by a Fourier transformation (the transform 3a-3b is canonical and unitary) 𝐴(𝑥, 𝑡) → 𝑎(𝑘, 𝑡),
where

𝑎(𝑘, 𝑡) = ∫
∞

−∞
𝐴(𝑥, 𝑡)𝑒−2𝜋𝑖𝑘𝑥𝑑𝑥. (10)

In the new variables, the general form of the Hamiltonian corresponding to equation 1, with-
out creation-anihilation terms, [e.g., Zakharov et al., 1992], and retaining only the leading
order nonlinearity, is

𝐻 = ∫
∞

−∞
𝜔𝑘𝑎𝑘𝑎∗

𝑘𝑑𝑘 + 1
2 ∭

∞

−∞
(𝑉1;23𝑎∗

1𝑎2𝑎3 + 𝑉∗
1;23𝑎1𝑎∗

2𝑎∗
3) 𝛿𝑘

1;23𝑑𝑘123. (11)

To simplify the notation we used the following shorthand notations: 𝑎𝑗 = 𝑎 (𝑘𝑗, 𝑡), 𝜔𝑗 =
2𝜋𝑓 (𝑘𝑗); and 𝑎𝑘 = 𝑎(𝑘, 𝑡),𝜔𝑘 = 𝜔(𝑘, 𝑡) formodes 𝑘 and 𝑘𝑗; 𝑑𝑘23 = 𝑑𝑘2𝑑𝑘3, 𝛿𝑘

1;23 = 𝛿 (𝑘1 − 𝑘2 − 𝑘3).
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The nonlinear term is a convolution integral of all the nonlinear terms. The interaction coef-
icients 𝑉1;23 = 𝑉(𝑘1, 𝑘2, 𝑘3) depend on the wavenumber, and are symmetric in the indices 2
and 3. If the Hamiltonian is identi iedwith the energy of the system (conserved), the quantity
|𝑎|2 has dimensions of action (energy × time).
The Hamiltonian form 11 is universal; the details of the physics of the system are contained
in the dispersion relation𝜔 = 𝜔(𝑘) and the structure of the interaction coef icient𝑉1;23. The
canonical equations become

𝑖 •𝑎𝑘 = 𝛿𝐻
𝛿𝑎∗

𝑘
; −𝑖

•
𝑎∗

𝑘 = 𝛿𝐻
𝛿𝑎𝑘

, (12)

where we used the bullet notation for time derivative •𝑞 = 𝑑𝑞
𝑑𝑡 , and introduced the standard

notation 𝛿 for the variational derivative. Because the two equations are obtained from each
other through complex conjugation, the system8 is nowreduced to equation a single equation
(the second equation is simply its complex conjugate). Substituting the Hamiltonian 11 into
equations 12 obtains equation

𝑖 •𝑎𝑘 = 𝜔𝑘𝑎𝑘 + 1
2 ∬

∞

−∞
(𝑉𝑘;12𝑎1𝑎2𝛿𝑘

𝑘;12 + 2𝑉∗
1;𝑘2𝑎1𝑎∗

2𝛿𝑘
1;𝑘2) 𝑑𝑘12 + … (13)

(equation 3.1 in the paper). Equation 13, usually referred to as the dynamical equation, is the
basis of our framework, and the main object of this discussion. Under the assumptions made
so far, like the Hamiltonian form 11, equation 13 is universal, with the physics of the system
contained in the coef icients.

3. A : BBGKY

The goal of averaging of dynamical equation 13 is to derive evolution equations for moments
of the probability distribution of𝜑, or alternatively, its cumulants. In the Fourier space, this is
equivalent to deriving the evolution equations for quantities known as “correlators”, such as
⟨𝑎∗

1𝑎2⟩, ⟨𝑎∗
1𝑎2𝑎3⟩, ⟨𝑎∗

1𝑎∗
2𝑎3𝑎4⟩, and so on, where the angular brackets denote the ensemble av-

erage. While the derivation is of the equation is straightforward, the resulting system is com-
prised of an in inite sequence of equations that, at each order, involve correlators of higher
order, e.g.,

⟨𝑎∗
1𝑎2⟩• = 𝐹2 (⟨𝑎∗

1𝑎2𝑎3⟩) , ⟨𝑎∗
1𝑎2𝑎3⟩• = 𝐹3 (⟨𝑎∗

1𝑎∗
2𝑎3𝑎4⟩) , … (14)

and so on, where 𝐹2 and 𝐹3 are some functions. System 14, known as the BBGKY hierar-
chy (Bogolyubov-Born-Green-Kirkwood-Yvon; e.g., Montgomery and Tidman, 1964, Alexeev,
2004), is not closed and cannot be solved, unless some means of truncating it (closure) are
found. The closure problem is familiar to statistical mechanics. We provide here a sketch of
the calculations, following procedures detailed in Newell, 1999, Newell et al., 2001, Zakharov
et al., 1992, Zakharov, 1999, Nazarenko, 2011 and others.
Assuming spatial homogeneity implies that

⟨𝑎∗
1𝑎2⟩ = 𝑛(𝑘1)𝛿(𝑘1 − 𝑘2) = 𝑛1𝛿𝑘

1;2, (15)
⟨𝑎∗

𝑘𝑎1𝑎2⟩ = B𝑘;12𝛿(𝑘 − 𝑘1 − 𝑘2) = B𝑘;12𝛿𝑘
𝑘;12. (16)

(equations 3.4-3.5 in the paper), where quantity 𝑛(𝑘) represents the action density, but is
also referred to as “occupancy number” or “number of particles”, by analogy with quantum
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mechanics. Wewill also call 𝑛 andB by their generic stochastic-process names of “spectrum”
and “bispectrum”, respectively.

Double correlator (spectrum). To derive an equation for the double correlator multiply equa-
tion by 𝐴∗

1 and subtract from it its complex conjugate and average using the spatial homo-
geneity assumptions (equations 15- 16) obtains the lowest order equation of the BBGKY hi-
erarchy,

•𝑛𝑘 = ∬
∞

−∞
(ℑ {𝑉𝑘;12B𝑘;12𝛿𝑘

1;𝑘2} + 2ℑ {𝑉∗
1;𝑘2B

∗
1;𝑘2𝛿𝑘

1;𝑘2}) 𝑑𝑘12 (17)

describing the evolution of the spectrum 𝑛 as a function of the bispectrum.

Triple correlator (bispectrum). An equation for the evolution of the bispectrumB can also be
derived from thedynamical equation13. Differentiating to time the triple products 𝑎∗

𝑘𝑎1𝑎2 and
𝑎1𝑎∗

𝑘𝑎∗
2 and averaging yields, for example for the irst product in the equation for the double

correlator
(𝑎1𝑎∗

𝑘𝑎∗
2)• 𝛿𝑘

1;𝑘2 = 𝑖Δ𝜔
𝑘;12 ⟨𝑎1𝑎∗

𝑘𝑎∗
2⟩ 𝛿𝑘

1;𝑘2

− 𝑖
2 ∬

∞

−∞
(𝑉1;34 (𝑎∗

𝑘𝑎∗
2𝑎3𝑎4) 𝛿𝑘

1;34 + 2𝑉∗
3;14 (𝑎∗

𝑘𝑎∗
2𝑎3𝑎∗

4) 𝛿𝑘
3;14) 𝑑𝑘34

+ 𝑖
2 ∬

∞

−∞
(𝑉∗

𝑘;34 (𝑎1𝑎∗
2𝑎∗

3𝑎∗
4) 𝛿𝑘

𝑘;34 + 2𝑉3;𝑘4 (𝑎1𝑎∗
2𝑎∗

3𝑎4) 𝛿𝑘
3;𝑘4) 𝑑𝑘34

+ 𝑖
2 ∬

∞

−∞
(𝑉∗

2;34 (𝑎1𝑎∗
𝑘𝑎∗

3𝑎∗
4) 𝛿𝑘

2;34 + 2𝑉3;24 (𝑎1𝑎∗
𝑘𝑎∗

3𝑎4) 𝛿𝑘
3;24) 𝑑𝑘34, (18)

showing that the evolution of triple correlators is driven by quadruple correlators ⟨𝑎𝑘𝑎1𝑎∗
2𝑎∗

3⟩.
The same procedure can be applied to derive evolution equations for higher-order correla-
tors. At each step next order correlators are involved, thus the resulting system of equations
is not “closed” and cannot be solved. Assumptions that lead to the closure of the system have
to be made.

3.1. Quasi-Gaussian closure. If amplitudes are small and stay small through the evolution
process, say 𝑎 = 𝑂(𝜖), where 𝜖 ≪ 1, then correlators are (and stay)well ordered, i.e., ⟨𝑎1𝑎2⟩ =
𝑂(𝜖2), ⟨𝑎∗

1𝑎2𝑎3⟩ = 𝑂(𝜖3),and so on. This property of the equation is commonly referred to
as weak nonlinearity. Then fourth-order correlators ⟨𝑎1𝑎2𝑎∗

3𝑎∗
4⟩ should have a generic quasi-

Gaussian structure (i.e., dominated by variance, e.g., Newell et al. 2001, Nazarenko 2011),
⟨𝑎1𝑎2𝑎∗

3𝑎∗
4⟩ = 𝑛1𝑛2𝛿1;3𝛿2;4 + 𝑛1𝑛2𝛿1;3𝛿2;4 + 𝑄1234 (19)

where 𝑄1234 is a irreducible residual of higher order (𝜖−5). Substituting equation 19 into the
average of the triple product in equation 18 and neglecting the irreducible terms yields the
equation for the evolution of the bispectrum

(𝑖 𝑑
𝑑𝑡 + Δ𝜔

𝑘;12)B𝑘;12 = −𝑉∗
𝑘;12𝛿𝑘

𝑘;12𝑛𝑘𝑛1𝑛2 ( 1
𝑛𝑘

− 1
𝑛2

− 1
𝑛2

) . (20)

Equations 17 and 20 form the system of coupled equations (equations 3.6 in the paper). The
BBGKY system is closed, since the evolution of the bispectrum depends only on the spectrum.
Equations 17 and 20 describe the stochastic evolution of the system, on time scales of order
𝑂 (𝜖−4).
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We should stress that this closure is valid only for as long as the correlators are well ordered.
If singularities appear as a result of the evolution, the closure breaks down. Simple scaling
consideration [Newell and Rumpf, 2010] show that the closure is scale dependent and neces-
sarily breaks a small scales.

3.2. The kinetic equation. With some standard simpli ications [e.g., Zakharov et al., 1992,
Zakharov, 1999, Anenkov and Shrira, 2018], the system 17-20 may be simpli ied further. As-
suming that the spectrum varies with time much slower than the linear phase ( •𝑛 ≪ Δ𝜔

1;23;
averaging the modulus squared 𝑛 = ⟨|𝑎|2⟩ eliminates the fast oscillatory time-dependence),
equation 20 can be integrated approximately for 𝑡 = 𝑂 ( 1

∆𝜔
3;12

) to obtain

B𝑘;12 = B𝑘;12(0) + 𝑖𝑉∗
𝑘;12𝛿𝑘

𝑘;12 ∫
𝑡

0
𝑑𝑠𝐽𝑘;12𝑒−𝑖∆𝜔

𝑘;12(𝑠−𝑡); (21)

𝐽𝑘;12 = 𝑛𝑘𝑛1𝑛2 ( 1
𝑛𝑘

− 1
𝑛2

− 1
𝑛2

) . (22)

If the initial bispectrum is zero (B𝑘;12(0) = 0) and factoring out of the integral the expression
𝐽𝑘;12 containing the spectra obtains

B𝑘;12 = −𝑉∗
𝑘;12𝛿𝑘

𝑘;12𝐽𝑘;12 ⎛⎜
⎝

1 − cosΔ𝜔
𝑘;12𝑡

Δ𝜔
𝑘;12

− 𝑖𝑡 sincΔ𝜔
𝑘;12𝑡⎞⎟

⎠
, (23)

where sinc 𝑥 = sin𝑥
𝑥 . The long time limit 𝑡 → ∞ of equation ,

lim
𝑡→∞

B𝑘;12 = −𝑉∗
𝑘;12𝛿𝑘

𝑘;12𝐽𝑘;12 ⎡⎢
⎣

𝑃
Δ𝜔

𝑘;12
− 𝑖𝜋𝛿 (Δ𝜔

𝑘;12)⎤⎥
⎦

(24)

where 𝑃
𝑥 is Sokhozki’s generalized function [Vladimirov, 2002], satisfying the relation

∫
∞

−∞
(𝑃

𝑥 ) 𝑓 (𝑥)𝑑𝑥 = 𝑃 ∫
∞

−∞

𝑓 (𝑥)
𝑥 𝑑𝑥, (25)

with 𝑃 denoting the principal value of the integral. This solution is meaningful only if Δ𝜔
3;12 =

0, a condition that comes in addition to the selection criterion Δ𝑘
3;12 = 0 for the triad. The

system of equations
𝑘 − 𝑘1 − 𝑘2 = 0, (26a)

𝜔(𝑘) − 𝜔(𝑘1) − 𝜔(𝑘2) = 0, (26b)
is called “resonance conditions”.
Substituting into the equation for the evolution 17 of the spectrum, which requires only the
imaginary part of the bispectrum obtains, after symmetrization, a single equation called the
kinetic equation (equation 3.7 in the paper)

𝑛𝑘 = 𝜋 (R𝑘;12 − R1;𝑘2 − R2;𝑘1) , (27)

R𝑘;12 = ∬
∞

−∞
∣𝑉𝑘;12∣2 𝑛𝑘𝑛1𝑛2 ( 1

𝑛𝑘
− 1

𝑛2
− 1

𝑛2
) 𝛿𝑘

𝑘;12𝛿𝜔
𝑘;12𝑑𝑘12, (28)
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where 𝛿𝜔
𝑘;12 = 𝛿(Δ𝜔

𝑘;12) = 𝛿(𝜔𝑘 − 𝜔1 − 𝜔2). Equation 27 states that in the long-time limit
the only interactions that are effective are due to triads that satisfy the resonance conditions
imposed by the factors 𝛿𝜔

𝑘;12𝛿𝑘
𝑘;12, i.e., satisfying the conditions,
Δ𝑘

𝑘;12 = 𝑘 − 𝑘1 − 𝑘2 = 0, (29a)
Δ𝜔

𝑘;12 = 𝜔(𝑘) − 𝜔(𝑘1) − 𝜔(𝑘2) = 0, (29b)
equivalent to the “maximal” effectiveness of nonlinear interaction (see discussion of equa-
tions ??). Whether or not equation 13 has resonant triads depends on the linear properties
of the physical system. The resonance conditions play an important role in the stochastic
theory [e.g., Zakharov et al., 1992, Nazarenko, 2011, Anenkov and Shrira, 2018].

3.3. Conservation laws for the kinetic equation. The dynamical equation 13 has one inte-
gral of motion, the Hamiltonian 11. The kinetic equation 27 has its own set of integrals. Let
𝑄 be the physical-space density of an extensive quantity,

𝑄(𝑡) = ∫q(𝑘, 𝑡)𝑑𝑘 = ∫ 𝜌(𝑘)𝑛(𝑘, 𝑡)𝑑𝑘. (30a)
where 𝜌(𝑘) does not depend on time. Examples of such quantities are the energy 𝐸 with den-
sities e = 𝜔(𝑘)𝑛, and momentum 𝑀 with densitiesm = 𝑘𝑛. Using the kinetic equation, the
time derivative of 𝑄 is

•
𝑄 = 𝜋 ∫

∞

−∞
𝜌𝑘 (R𝑘;12 − R1;𝑘2 − R2;𝑘1) 𝑑𝑘. (30b)

The quantity 𝑄 is conserved if
•
𝑄 = 0. In general, the conservation equation 31 may also be

recast as a continuity (transport) equation
𝜕𝑡q(𝑘, 𝑡) + 𝜕𝑘𝐹q(𝑘, 𝑡) = 0. (30c)

whereFq is the spectral lux ofq. Comparing equations 31 and 30c, one can write

Fq(𝑘) = − ∫
𝑘

0
𝑑𝑘𝜌𝑘 (R𝑘;12 − R1;𝑘2 − R2;𝑘1) . (30d)

If the density q(𝑘, 𝑡) is stationary then 𝜕𝑡q = 𝜕𝑘𝐹q = 0, 𝑄 is conserved, and the spectral
q- lux is constant.
Such conserved quantities exist. For example, if ∣𝑉𝑘;12∣2 is invariant to permutations of in-
dices, relabeling in equation 30b 1 ↔ 𝑘 inR1;𝑘2 and 2 ↔ 𝑘 inR2;𝑘1 transforms it into

•
𝑄 = 𝜋 ∭

∞

−∞
(𝜌𝑘 − 𝜌1 − 𝜌2) ∣𝑉𝑘;12∣2 𝐽𝑘;12𝛿𝑘

𝑘;12𝛿𝜔
𝑘;12𝑑𝑘𝑑𝑘12. (31)

The product Δ𝜌
𝑘;12𝛿𝑘

𝑘;12𝛿𝜔
𝑘;12 cancels if 𝜌 = 𝜔(𝑘) or 𝜌 = 𝑘. It is obvious that the energy 𝐸 and

momentum 𝑀, de ined as

𝐸 = ∫
∞

0
e(𝑘, 𝑡)𝑑𝑘 = ∫ 𝜔(𝑘)𝑛(𝑘, 𝑡)𝑑𝑘, (32)

𝑀 = ∫
∞

0
m(𝑘, 𝑡)𝑑𝑘 = ∫ 𝑘𝑛(𝑘, 𝑡)𝑑𝑘, (33)

are conserved by the kinetic equation.

3.4. Stationary solutions of the kinetic equation.
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3.4.1. Thermodynamic equilibrium, Rayleigh-Jeans (RJ) spectra: A family of stationary spectra
for equation 27 is immediately found by inspection. If we set

𝑛RJ(𝑘) = 𝑇
𝑐𝜔𝜔 + 𝑐𝑘𝑘 , (34)

where 𝑇, 𝑐𝜔 and 𝑐𝑘 are constants, the integrand 𝐽𝑘;12𝛿𝑘
𝑘;12𝛿𝜔

𝑘;12 = 0 for all triads. More-
over, this spectrum corresponds to the equipartition of the quantity 𝑄 with density q(𝑘) =
(𝑐𝜔𝜔 + 𝑐𝑘𝑘) 𝑛𝑘; for example, if 𝑐𝑘 = 0, this represents the equipartition of energy. This type
of stationary state corresponds to a “detailed balance”, where nonlinear interaction cancels
for each triad, and •𝑛 = 0 regardless of the quantity q carried by the number of particles 𝑛.
The spectralq- lux cancels, in equation 30c 𝐹q = 0.
Thermodynamic equilibriumstates cannotbe realizedat all scalesbecause equipartitionmeans
that the physical-space density 𝑄 = ∫ 𝑇𝑑𝑘 is in inite (a phenomenon known as the ultra-
violet catastrophe). However, it might occur if the spectral luxes “stagnate” near a critical
wavenumber 𝑘0, preventing luxes to in inite wavenumbers. The system will tend to “ther-
malize”, i.e., approach a zero- lux, thermodynamic equilibrium state (a discussion of this “bot-
tleneck” scenario is given in Nazarenko, 2011).

3.4.2. Kolmogorov-Zakharov spectra. In non-isolated systems that have sources and sinks
of 𝑄 well separated in the spectral domain, one would expect non-zero luxes 𝐹q from the
sources to sinks, similar to the hydrodynamic energy cascade described by Richardson and
Kolmogorov [Richardson, 1922, Kolmogorov, 1941, Frisch, 1995]. Nonzero stationary solu-
tionsof thekinetic equationswere foundbyZakharovandFilonenko [1967a,b] andareknown
as the Kolmogorov-Zakharov (KZ) spectra.
At stationarity, the integral on the left-hand side of equation 27 cancels. Under quite gen-
eral conditions (e.g., if only one physical process is involved), the dispersion relation and the
interaction coef icients are homogeneous of degree 𝛼 and 𝛽, respectively:

𝜔(𝑘) ∝ 𝑘𝛼; 𝜔(𝜆𝑘) = 𝜆𝛼𝜔(𝑘); (35)
𝑉(𝜆𝑘1, 𝜆𝑘2, 𝜆𝑘3) = 𝜆𝛽𝑉(𝑘1, 𝑘2, 𝑘3).

Because we are in a unidimensional system, we are not concerned is isotropy. Look for a
solution in the power law form

𝑛(𝑘) ∝ 𝑘𝜈. (36)
in equation 27, change the integration variables to (Zakharov transformation)

𝑘 = 𝜅; 𝑘1 = 𝑘2

𝜅1
= 𝜅2

𝑘1
; 𝑘2 = 𝑘𝜅2

𝜅1
. (37)

transforms the second to

∫
∞

−∞
∣𝑉1;𝑘2∣2 𝐽1;𝑘2𝛿𝑘

1;𝑘2𝛿𝜔
1;𝑘2𝑑𝑘12 = ∫

∞

−∞
( 𝑘

𝑘1
)

2+2𝛽−𝛼+2𝜈
∣𝑉𝑘;12∣2 𝐽𝑘;12𝛿𝑘

𝑘;12𝛿𝜔
𝑘;12𝑑𝑘23.

Applying a similar transformation to the third term and denoting 𝑥 = −(2 + 2𝛽 − 𝛼 + 2𝜈), the
kinetic equation becomes

𝑑𝑛𝑘
𝑑𝑡 = 𝜋𝑘−𝑥 ∫

∞

−∞
(𝑘𝑥 − 𝑘𝑥

1 − 𝑘𝑥
2) ∣𝑉𝑘;12∣2 𝐽𝑘;12𝛿𝑘

𝑘;12𝛿𝜔
𝑘;12𝑑𝑘12. (38)
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The spectrum 𝑛(𝑘) is stationary if (compare with equation 31) either 1) 𝑥 = 𝜔,𝜈 = −1 − 𝛽,
corresponding to the conservation of linear energy, or if 2) 𝑥 = 1, 𝜈 = 𝛼−3

2 −𝛽, corresponding
to conservation of momentum. Neither is an RJ spectra, since 𝜈 ≠ 𝛼 and 𝜈 ≠ 1, therefore
neither cancels the integrand R𝑘;12. Note that because the Zakharov transformation 37 is
singular in 𝑘1 = 0 (non-identity transformation) and the integrals in the kinetic equation
27 are not bounded, the validity of the KZ stationary solution is not guaranteed unless the
convergence of the integrals is veri ied.
A simple scaling argumentmay be used to show that the spectral energy lux is constant in the
the case 𝑥 = 𝛼. The continuity equation 30c for energy (equation 32) in the spectral domain
is

𝜕𝑡e + 𝜕𝑘𝐹e = 0,
where the energy lux is (see equation 30d)

𝐹e(𝑘) = −𝜋 ∫
𝑘

0
𝑑𝑘𝜔𝑘 ∫

∞

0
(R𝑘;12 − R1;𝑘2 − R2;𝑘1) 𝑑𝑘12.

Scaling allwavenumbers by 𝑘, i.e., changing variables (𝑘, 𝑘1, 𝑘2) → 𝑘(𝜅, 𝜅1, 𝜅2)brings the spec-
tral energy lux to the scaled form

𝐹e(𝑘) = −𝜋𝑘2𝜈+2+2𝛽 ∫
1

0
𝑑𝜅𝜔𝜅 ∬

∞

0
(R𝜅;12 − R1;𝜅2 − R2;𝜅1) 𝑑𝑘12 (39)

Setting the scaling factor to be independent of 𝑘 means setting 2𝜈 +2+2𝛽 = 0, which obtains
𝜈 = −1 − 𝛽, i.e., the KZ spectral slope obtained above. A similar argument shows that the
second KZ spectrum (𝜈 = 𝛼−3

2 − 𝛽) corresponds to constant spectral luxes of momentum.

3.5. The three-wave equation. The three wave equation is a universal model [Weiland and
Wilhelmsson, 1977, Craick, 1985, Zakharov et al., 1992] deriving from thedynamical equation
13 by restricting the interaction to a single triad of modes (𝜅1, 𝜅2, 𝜅3) satisfying the selection
criterion 𝜅3 = 𝜅1 + 𝜅2

𝑎𝑘 = 𝐴1𝛿𝑘;𝜅1
+ 𝐴2𝛿𝑘;𝜅2

+ 𝐴3𝛿𝑘;𝜅3
= 𝐴1𝛿𝑘;𝜅1

+ 𝐴2𝛿𝑘;𝜅2
+ 𝐴3𝛿𝑘;𝜅1𝜅2

. (40)
Substituting equation 40 into the dynamical equation 40 obtains equation

𝑖
•

𝐴1 = 𝜔1𝐴1 + 𝑉3;12𝐴3𝐴∗
2, 𝑖

•
𝐴2 = 𝜔2𝐴2 + 𝑉3;12𝐴3𝐴∗

1, 𝑖
•

𝐴3 = 𝜔3𝐴3 + 𝑉3;12𝐴1𝐴2. (41)

Substituting 𝐴𝑗 = 𝑏𝑗𝑒
𝑖𝜃𝑗 , with 𝑏𝑗, 𝜃𝑗 ∈ ℝ and 𝑏𝑗 > 0, obtains the amplitude-phase representa-

tion
•

𝑏1 = 𝑉3;12𝑏2𝑏3 sinΔ𝜃
3;12,

•
𝜃1 = −𝜔1 − 𝑉3;12

𝑏2𝑏3
𝑏1

cosΔ𝜃
3;12,

•
𝑏2 = 𝑉3;12𝑏1𝑏3 sinΔ𝜃

3;12,
•

𝜃3 = −𝜔2 − 𝑉3;12
𝑏1𝑏3
𝑏2

cosΔ𝜃
3;12,

•
𝑏3 = −𝑉3;12𝑏1𝑏2 sinΔ𝜃

3;12,
•

𝜃3 = −𝜔3 − 𝑉3;12
𝑏1𝑏2
𝑏3

cosΔ𝜃
3;12. (42)

The system 42 may be reduced to 4 equations and has analytical solution given in terms of
Jacobi elliptic functions. Combining the last three equations yields a system of four equations
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with four unknowns: the amplitudes 𝑏𝑗, 𝑗 = 1, 2, 3, and the phase Δ𝜃
3;12

•
𝑏1 = 2𝑉3;12𝑏2𝑏3 sinΔ𝜃

3;12,
•

𝑏2 = 2𝑉3;12𝑏1𝑏3 sinΔ𝜃
3;12,

•
𝑏3 = −2𝑉3;12𝑏1𝑏2 sinΔ𝜃

3;12,

(Δ𝜃
3;12)

•
= −Δ𝜔

3;12 − 2𝑉3;12 (𝑏1𝑏2
𝑏3

− 𝑏2𝑏3
𝑏1

− 𝑏1𝑏3
𝑏2

) cosΔ𝜃
3;12 (43)

Following the Gaussian closure procedure, and assuming the triad is resonant (see equations
29) one obtains the kinetic three-wave equations [e.g., Rabinovich and Trubetskov, 1989]

•𝑛1 = 2𝜋 ∣𝑉3;12∣2 𝑛1𝑛2𝑛3 ( 1
𝑛3

− 1
𝑛1

− 1
𝑛2

) ,

•𝑛2 = 2𝜋 ∣𝑉3;12∣2 𝑛1𝑛2𝑛3 ( 1
𝑛3

− 1
𝑛1

− 1
𝑛2

) ,

•𝑛3 = −2𝜋 ∣𝑉3;12∣2 𝑛1𝑛2𝑛3 ( 1
𝑛3

− 1
𝑛1

− 1
𝑛2

) , (44)

where the notation is the same as the one used for the full kinetic equation 27. Because the
physical system described by equations 44 comprises only one triad, stationarity conditions
degenerate to detailed balance. The RJ spectrum 34 is obviously a solution: direct substitu-
tion of expression 34 into equations 44 cancels the factor in parentheses. Energy and mo-
mentum are conserved regardless of whether 𝑛𝑗 are stationary or not, because the triad is
resonant (equations 26)

∑
𝑗=1,2,3

𝜔𝑗𝑛𝑗 = −2𝜋 ∣𝑉3;12∣2 𝑛1𝑛2𝑛3 ( 1
𝑛3

− 1
𝑛1

− 1
𝑛2

) (𝜔3 − 𝜔1 − 𝜔2) = 0

∑
𝑗=1,2,3

𝑘𝑗𝑛𝑗 = −2𝜋 ∣𝑉3;12∣2 𝑛1𝑛2𝑛3 ( 1
𝑛3

− 1
𝑛1

− 1
𝑛2

) (𝑘3 − 𝑘1 − 𝑘2) = 0.
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