
Appendices of the article:

The impact of spatial and temporal dimensions

of disturbances on ecosystem stability

Yuval R. Zelnik, Jean-François Arnoldi, Michel Loreau

Centre for Biodiversity Theory and Modelling, Theoretical and

Experimental Ecology Station, CNRS and Paul Sabatier

University, 09200 Moulis, France.

Appendix A: Approximation of return time for

the AE model

To understand the shape of the return time curve T (σ) for the AE model,

as seen in bottom right panel of Figure 2, we consider the initial response of

the system just after the disturbance has occurred. If we ignore the effect of

diffusion, then the domain that was not disturbed does not react at all, while

the disturbed domain either rebounds back to the vegetated state N = K,

or falls further to the bare state N = 0. This depends simply on whether

the current level of biomass N0 (immediately after the disturbance) is higher

or lower than α. If we note the system size as L, the spatial extent of the

disturbance as σ, and the disturbance strength (percentage of biomass cut) as

s, then the biomass value at the disturbed region just after the disturbance

occurred is:

N0 = K(1− s/σ) (S1)
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We therefore have a critical value of σ when N0 = α, which will decide whether

the disturbed region would rebound without the effect of diffusion, as:

σc =
sK

K − α
(S2)

As shown in Figure S1 with a vertical red line, this approximation gives a

good indication to where the return time changes behaviour rapidly. For larger

disturbances σ > σc, each single point would recover from the disturbance

on its own accord. Moreover, the contribution of spatial processes to this

recovery would be negligible if the rate of isolated recovery riso is much faster

than the rate of rescue recovery rres, namely riso � rres. We can use simple

dimensional considerations (Meron, 2015) to estimate what are the conditions

for this situation.

First, we can estimate riso by r, since it is the only parameter with units

of time and no relation to space. This estimation will break down close to the

unstable equilibrium (since the recovery rate will go to zero), i.e. when σ is

close to σc. To estimate rres we need to consider how fast a front between the

disturbed and undisturbed domains moves. In general, the front’s speed u

between two domains in a model that can be written as Nt = rf(N) + d∇2N

would be proportional to both the rate of local dynamics r and the rate

of diffusion d as u ∼
√
rd, due to dimensional considerations. The area of

the disturbed region is σL, so that the overall time to recovery is the ratio

between area and speed, τ ∼ σL/
√
rd. We can thus estimate the rescue

recovery rate as rres ∼
√
rd/(σL), and compare this to riso. This gives us

the condition σ �
√
r/d/L, which is easily met in the parameters we choose

since L is large enough. Therefore to approximate the rate of recovery for

σ > σc we can just use the return time when we ignore spatial effects (d = 0).

Indeed, this estimation, shown by the right-more blue curve in Figure S1,

works well, even for lower values of σ close to the critical value σc.

For the opposite regime, σ < σc we can easily assume that isolated recovery

is negligible, since in the bistable AE model isolated recovery is not possible

when locally N < α. To estimate the rescue recovery we again consider

the speed of a front between the disturbed and undisturbed domains. Here,
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both of these can be assumed to be the two stable states, and under these

conditions the front speed is a constant that depends only on the model

parameters (Meron, 2015). In particular, the front speed u grows with the

rate of local dynamics r and diffusion coefficient d as u ∼
√
rd, and for the

AE model considered here, u also grows with α once α > K/2 (the front is

stationary at α = K/2 due to the symmetry between the two stable states

for these parameters). If we assume that once a disturbance occurs, the time

until the disturbed region collapses to the alternative state is negligible, then

the recovery time T in simply the time it takes the fronts to take over the

disturbed region:

T =
σ

2u
(S3)

This approximation is shown in the left-more blue curve in Figure S1. While

there is a clear under-estimation of the return time in this case due to complex

front dynamics, the overall trend and the value for very localized disturbances

is well approximated.
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Figure S1: Approximation of the return time for the AE model. The black curve
denotes the return time for the AE model (see Figure 2), where we set s = 0.1. The
red vertical line shows the approximate separation point between the different regimes of
recovery, σc = sK

K−α . The two blue curves show the approximations of the return time in
the two different regimes. These approximations are calculated as described in the text
and multiplied by a factor of 0.9 since the return time (as shown in black) is defined as
recovery of 90% of the biomass (see Methods).
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Appendix B: Relation between return time and

variability

In this appendix we derive a general relation between recovery dynamics

following a single disturbance, and variability under repeated disturbances.

In this manuscript we formalize disturbance events as a realization of a point

process. We therefore begin by explicitly defining a point process that we use

for our derivation as well as the assumptions we make for this derivation. We

then detail the derivation itself, and finally we discuss the main results of this

derivation.

Definitions

A point process (p.p.) Φ is a random sampling of points in Rd such that

the number of points sampled in a bounded set is always finite (Baccelli

and Blaszczyszyn, 2010). We note Φ(A) as the restriction of a p.p. to a

given set A and we note φ(A) = {x1, x2, ...} ⊂ A as any of its realizations.

Let N(A) be the random variable representing the number of points in A

sampled by Φ. The intensity measure Λ of Φ counts the expected number of

point sampled from a given set, i.e. Λ(A) = EΦN(A). Note that, if A and

B are disjoint sets, N(A) and N(B) are independent random variables so

that CovΦ(N(A), N(B)) = 0. We call a Poisson process a p.p. such that, for

any A, the mean number of points sampled is also equal to the variance so

that EΦN(A) = VarΦN(A) = Λ(A). A homogeneous Poisson process satisfies

Λ(A) = f |A| where |A| is the usual volume of A. In this case, this simply

means that Φ(A) is a uniform sampling of points of A, with an expected

number of points proportional to the volume of that set.

Our derivation, as given below, follows from the intuition that if the

disturbances are not too frequent, so that they do not often interact in space,

then we can use the superposition principle to find a relation between the

response to one disturbance and the response to multiple disturbances. More

concretely, our reasoning, as illustrated in Figure S2, requires the following

assumptions:
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1. We assume disturbance events to be realizations of a Poisson p.p. Φ in

R of intensity measure Λ.

2. We assume no spatial interactions between disturbances, thus neglecting

co-occurrence events, where multiple disturbances co-occur in a small

region.

Derivation

Let us denote g(t) as the recovery function from a single disturbance, so

that g(0) = sK, where s is the relative overall strength of the disturbance,

and by our definition of return time TR we have: g(TR)/g(0) = 10%. Let

φ([−∞, t]) be a random realization of all past disturbance events. The

displacement time series of overall biomass under a repeated disturbance

regime, hφ(t) = K −Ntot(t) will be

hφ(t) =
∑

tk∈φ([−∞,t])

g(t− tk) (S4)

Note that for Eq.(S4) to hold, assumption (2) is necessary only if the dynamical

response to an individual disturbance is non-linear. If the response is linear, a

superposition principle allows Eq.(S4) to be true (Arnoldi et al., 2016), even

without assumption (2). In fact, for global disturbances (σ = 1), assumption

(2) cannot hold, yet Eq.(S4) still holds because a global disturbance typically

induces only small displacements from K, so that the recovery is essentially

linear.

By ergodicity of the point process, taking an average over long times for

one realized time series is equivalent to taking a point average (say at time 0)

over realizations, so that

〈h〉 = lim
T→∞

1

T

∫ 0

−T
hφ(t)dt = EΦhΦ(0) (S5)

We are thus left to analyse random variables of the form
∑
Tk∈Φ([0,T ]) g(Tk), a

realization of which is
∑

tk∈φ([0,T ]) g(tk) (note the change of variables −tk → tk,
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Figure S2: Illustration of how return time following a single disturbance trans-
lates into the variability under a regime of repeated disturbances. (a,b) Snapshot
at time t∗ of the local and regional dynamics, following three different disturbances (D1,
D2, D3) at times (t1, t2, t3). The local dynamics (a) are shown using a potential (similar
to Figure 2), with three balls and arrows corresponding to the local state at each disturbed
region. A snapshot of the two-dimensional system shows the regional dynamics (b), as each
disturbance occurred in a different location in space in a different time, and therefore has
a different size and different biomass value in the disturbed region. (c) The trajectory of a
system following a single disturbance is shown, where the current state at time t∗ of each
disturbance (if it occurred alone) is noted by a red circle. (d) The overall biomass over time
due to the three disturbances can be approximated well by adding the three trajectories
following a single disturbance in appropriate times, as shown by the grey shading. The
effect at time t∗ of each disturbance and all together is shown by the red circles. (e) A
regime of repeated disturbances at different times results in a noisy time series (blue line)
that can be measured by the variance (grey shade). This measure of variability V can be
well approximated as the product of the average frequency of disturbance f and the second
moment of the trajectory following a single disturbance A.
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so as to restrict to positive times). We may approximate g(t) with arbitrary

precision by a piece-wise constant function g̃(t) =
∑

i gi1Ai(t) where the Ai’s

are mutually disjoint intervals such that
⋃
Ai = [0, T ] and the functions 1Ai(t)

are defined by 1Ai(t) = 1 when t ∈ Ai and 0 otherwise. The numbers gi

approximate the function g in Ai. Importantly∑
Tk∈Φ([0,T ])

1Ai(Tk) = N(Ai) (S6)

From assumption (1) EΦN(Ai) = Λ(Ai) where Λ is the intensity measure of

Φ. We thus see that

EΦ

∑
Tk∈Φ([0,T ])

g̃(Tk) =
∑
i

giΛ(Ai) =

∫ T

0

g̃(t)dΛ(t) (S7)

Because the approximation of g(t) by g̃(t) is arbitrarily good this finally yields:

〈h〉 =

∫
g(t)dΛ(t) (S8)

In the main text we defined variability as the variance of hφ(t). If we repeat

the above reasoning on h2
φ instead of hφ we get that, with arbitrary accuracy,

EΦh
2
Φ(0) ' EΦ

∑
Tk,Tk′∈Φ(R+) g̃(Tk)g̃(Tk′)

= EΦ(
∑

i giN(Ai))(
∑

j gjN(Aj))

= (
∑

i giEN(Ai))
2 +

∑
i,j gigjCov(N(Ai), N(Aj))

= (
∑

i giEN(Ai))
2 +

∑
i g

2
i Var (N(Ai))

=
(∫

g̃(t)dΛ(t)
)2

+
∫
g̃(t)2dΛ(t)

(S9)

where the last two lines follow, respectively, from the fact that N(Ai) and

N(Aj) are independent r.v. if i 6= j (no temporal correlations) and the fact

that, for a Poisson process, Var (N(Ai)) = EN(Ai) = Λ(Ai). In terms of the
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integral norms ‖g‖nΛ,n =
∫
gn(t)dΛ(t), what we have proved is that, under

assumption (1) and (2)

〈
h2
〉

= ‖g‖2
Λ,1 + ‖g‖2

Λ,2 (S10)

so that variability becomes

V =
〈
h2
〉
− 〈h〉2 = ‖g‖2

Λ,2 (S11)

Discussion

In the particular case of a homogeneous Poisson process of intensity f , so

that Λ(A) = f |A| then we have that

V = f ×
∫
g(t)2dt (S12)

as illustrated in Figure S2. Note that homogeneity is not essential to our

arguments. For instance, if t is expressed in years, then seasonality effects

could be modelled by taking,

dΛ(t) = f × (1 + α(2 cos2(πt)− 1))dt (S13)

with 0 ≤ α ≤ 1. What is essential is the absence of temporal correlations

between disturbance events, which assumes that a disturbance does not

influence the occurrence of future disturbances. This is not always true

in natural systems, (e.g. a drought can make a fire more likely), but is a

reasonable assumption for most climatic events.

Note that we assumed so far that all disturbances had the same spatial

extent σ. This assumption can easily be relaxed by assuming σ to be a

random variable, with p.d.f. p(σ). The contributions to the overall variability

of disturbances of size σ′ ∈ [σ, σ + dσ] is dV (σ) = ‖gσ‖2
Λσ ,2

p(σ)dσ; so that

V =

∫ 1

0

‖gσ‖2
Λσ ,2

p(σ)dσ = Eσ ‖gσ‖2
Λσ ,2

(S14)
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In this sense, the relationship Eq.(S14) is quite general. However, it requires

assumption (2) to hold, especially for localized regimes of disturbances, for

which the response will typically be highly non-linear. As we explain in the

next section, departures from this prediction is the sign that disturbances

are aggregating into long-lived disturbed regions, a process that increases

variability and, in bistable systems, can lead to a regime shift.

Finally, it is interesting to note that had we assumed no temporal overlap

between responses to disturbances (assuming a very low frequency of events,

for instance) then we would have had

〈hn〉 =
1

T

∫ 0

−T
hφ(t)ndt =

|φ([−T, 0])|
T

∫
g(t)ndt→T→∞ f

∫
g(t)ndt (S15)

where |φ([−T, 0])| is the number of disturbance events that have occurred in

[−T, 0]. For a homogeneous p.p. and for n = 1 we recover Eq.(S8). However,

for n = 2 we do not find Eq.(S10). This shows that assuming no temporal

overlap between responses to compute V would induce an error equal to the

squared mean displacement 〈h〉2. An error that can easily be significant (but

is of second order in f as the frequency of events goes to zero).

Appendix C: Aggregation of disturbances

As discussed in the Results section, the aggregation of disturbances is the main

reason for the under-estimation of variability and for high collapse probability

(Figure 4). We describe here how this phenomenon affects variability and

collapse probability.

We define a disturbance aggregation as a situation when multiple dis-

turbances occur within the same time frame in different locations so that

effectively a large contiguous region in the system is disturbed at a given time.

This aggregation typically reduces the total biomass, and more significantly,

leads to an overall slow recovery when compared to a simple addition of

multiple non-interacting disturbances. As shown in Figure S3, occurrence of

such aggregation changes the recovery trajectory considerably (top panel),

which leads to higher variability (bottom panel).
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These events are more common for mid-sized disturbances, which is the

reason that the under-estimation is most prominent for these values of σ.

This is because an aggregation is more likely to occur when disturbances

have both a longer time-span and a larger spatial extent. Larger values

of σ mean that the size of each disturbed region is larger, and therefore it

takes less disturbances to cover a certain region. On the other hand, more

local disturbances (smaller σ) tend to lead to slower recovery (this can be

quite different between models, depending on local dynamics), and hence the

effect of each disturbance is retained for a longer time. Overall mid-sized

disturbances are the middle-ground between these two conditions, and it is

therefore there that disturbance aggregation occurs most frequently. For the

specific case of a bistable system such as the AE model, mid-sized disturbances

also have the slowest recovery, so the effect is even stronger.

We note that for bistable systems, a collapse to the alternative state is

possible if enough disturbances push the system to the other state. This

is essentially an extreme case of disturbance aggregation, where the distur-

bances cover the entire system. Therefore, when increasing the frequency

of disturbances we first see a collapse occurring for mid-sized disturbances,

and only for higher frequencies do we see it for smaller and larger extent of

disturbances (see Figure S4).

Appendix D: Generalization of results

The results presented in this paper have focused on a simple model setup

for the sake of clarity, but they can be easily generalized in various settings.

For example, in eq. S13 in Appendix C we show how temporal seasonality

can be taken into account and give the same overall results. We further

demonstrate here that our results are not specific to a particular spatial

structure, with two specific examples. We compare between one-dimensional

(1D) and two-dimensional (2D) systems, looking at the results for return time,

variability and collapse probability. We also consider a regime of repeated

disturbances where the size of disturbances is not the same every time, but

rather taken from a probability distribution.
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Figure S3: Dynamics of single simulation with multiple disturbances, demon-
strating the effect of disturbance aggregation. The dynamics of a single simulation
of the AE model with disturbance frequency of f = 0.01 and mid-sized disturbances
σ = 0.15 are shown in the three panels. This is compared with a ”constructed time-series“
where the effects of a single disturbance are added multiple times to form a time-series
that behaves as a simulation where disturbances do not interact in space (so that their
effect is always linearly additive). The top panel shows the overall biomass over time, for
both the actual simulation (blue) and the constructed time-series (red). The middle panel
shows a space-time simulation where the vertical axis shows the space of a one-dimensional
simulation, and colour depicts the amount of biomass (darker green denotes more biomass).
The bottom panel shows variability calculated over a running time-window of τv = 4000,
where for each point shown, the variability was calculated for part of the time-series with
length τv that is centred on that time point. The variability of the actual simulation
is shown in blue, whereas the variability for the constructed time-series is shown in red.
A large disturbance aggregation is seen starting t = 20000, which lowers the biomass
and increases the variability considerably (blue), with no counterpart for the constructed
time-series (red). Parameters used: r = 0.5, s = 0.1.

To demonstrate that the specific spatial structure of the ecosystem is not a

fundamental part of our theory, we show here results for a two dimensional (2D)
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ecosystem, and compare them to results for a one dimensional ecosystem (1D)

that we show in the main text. For the 2D case we consider an ecosystem with

the size of 200× 200 with periodic boundary conditions, and use disturbances

with a circular shape. As can be seen in Figure S5, the qualitative properties

for return time, variability and collapse probability, as described in the main

text, are the same for the 1D and 2D ecosystems. Note that the specific

frequencies that are compared are not the same, but rather chosen to show

the similarity in trends between the 1D and 2D ecosystems.

The trends of variability and collapse probability as described in the main

text hold under more general conditions. We consider here a more realistic

scenario by allowing disturbance’s size to randomly vary around a fixed average.

As an example we set σ to be randomly chosen from a Gaussian distribution

with a standard deviation of 0.05 around a given average (Figure S6). Both

the variability and collapse probability show a hump-shaped relationship with

the spatial extent of the disturbance in the bistable AE model (top panels),

while for models with a single equilibrium such as the SR model, no such

behaviour is seen (bottom panels).
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Figure S4: Variability V (top) and collapse probability C (bottom) in
the bistable AE model, for increasing frequencies of disturbances f =
{0.01, 0.0125, 0.015, 0.02}. The variability calculated from simulations is noted with a
dashed black line, with grey shading noting the error estimation of the standard deviation,
while the analytical approximation (Appendix B) for it is shown with a solid black line.
Parameters used: r = 0.5, s = 0.1.
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Figure S5: Comparison of return time, variability and collapse probability
between 1D (top) and 2D (bottom) ecosystems of the AE model. The left-most
column show the return time, the three middle columns show variability for different
frequencies, and the right most column shows collapse probability for the highest frequency.
The values of f are chosen to show similar behavior between the 1D and 2D case (f =
0.005, 0.01, 0.02 for 1D ecosystems, f = 0.01, 0.02, 0.05 for 2D ecosystems). In the middle
columns the dashed line shows numerical values of variability with grey shading noting
error estimation. The analytical prediction (based on the response to a single disturbance)
is shown in a solid black line, where deviation from this prediction implies some degree of
interaction between disturbances. Parameters used: r = 0.5, s = 0.1. 2D system is of size
200x200.
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Figure S6: Variability and the probability of collapse under a repeated distur-
bances with randomly distributed spatial extent. Results are for the locally bistable
AE model (top panel) and the SR model (bottom panel) that has a single equilibrium
(compare to Figure 4). Left and middle columns show variability (for low and high frequency
respectively), where the dashed line shows numerical estimations with grey shading noting
error estimation. The analytical prediction (based on the response to a single disturbance)
is shown in a solid black line, where deviation from this prediction implies some degree of
interaction between disturbances. Right column shows collapse probability for the high
frequency of disturbances. Disturbance extent is taken from a Gaussian distribution with
a standard deviation of 0.01, where the mean is changed along the x-axis between 0.1 and
0.2. Comparing with Figure 4 we see that allowing random variations in disturbance extent
leads to variability and collapse probability that are more of a smooth function of average
disturbance extent while preserving the hump shape for the bistable AE model. Low and
high frequencies used are f = 0.005, 0.02 for the AE model and f = 0.02, 0.05 for the SR
model. Parameters used: r = 0.5, s = 0.1.
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