## Supplementary Material

## The impact of coffee and caffeine on multiple sclerosis

A systematic review of beneficial or harmful and potential neuroprotective effects

Lena Herden, Robert Weissert*,<br>* Correspondence: Robert Weissert, MD PhD FAAN, robert.weissert@ukr.de

Supplemetary Table 1: Studies investigating the relationship between coffee or caffeine intake and Amyotrophic lateral sclerosis (ALS) and its animal model

|  | References | Study design | Cases | Findings |
| :---: | :---: | :---: | :---: | :---: |
| Clinical trials | Fondell et al. 2015 US (78) | Meta-analysis of five large cohort studies investigating the association between caffeine, coffee and tea and the risk of ALS | 1010000 cases with $\mathrm{n}=1279$ <br> ALS patients during a mean 18-year follow-up <br> Mean age at baseline $59.9 \pm$ 8.1 | Caffeine intake was not associated with ALS risk, whether for men nor women, in none of the five individual studies. |
|  | Beghi et al 2011 <br> Italy <br> (79) | Case-control study on how caffeine intake is associated with the risk of ALS | $\begin{aligned} & \mathrm{n}=485 \text { ALS patients } \mathrm{n}=820 \\ & \text { controls } \\ & \text { Age } 27-89 \end{aligned}$ | Coffee intake was less frequent among patients with ALS. $(\mathrm{p}=0,0004)$ There was an inverse relationship between ever coffee consumption versus never consumption and the risk of ALS (OR=0,6, 95\% CI 0,4-0,8) |
|  | Morozova et al. 2008 US (80) | Prospective study among participants of the Cancer Prevention Study II | Cohort n=1186622 $\mathrm{n}=923$ ALS cases <br> Mean age: women 63 , men 63.5 | Consumption of decaffeinated coffee was associated with an increased risk of ALS. There were no significant results about coffee, containing caffeine |
| Animal model | Potenza et al. 2013 Italy (81) | Experimental study on how caffeine intake affected survival and/or motor performance in a transgenic model of ALS | SOD1 ${ }^{\text {G93A }}$ mice | Caffeine intake significantly shortened the survival of SOD1 ${ }^{\text {G93A }}$ mice and induced a nonsignificant advancing of disease onset |

Supplementary Table 2: Studies examining the effect of coffee or caffeine on Parkinson's disease (PD)

|  | Reference | Study | Cases | Findings |
| :---: | :---: | :---: | :---: | :---: |
| Clinical trials | Postuma et al. 2017 Canada (84) | Multicenter parallel-group controlled trial on caffeine as a symptomatic treatment | $\mathrm{n}=60$ caffeine group <br> Age $62.4 \pm 7.5$ <br> $\mathrm{n}=61$ placebo group <br> Age $62.3 \pm 8.4$ | Caffeine did not provide clinically important improvement of motor manifestations of PD |
|  | Ferreira et al. 2016 Portugal (18) | Prospective crossover placebo controlled study on the effect of espresso on daytime somnolence at PD | $\begin{aligned} & \mathrm{n}=4 \mathrm{men} \\ & \text { Age } 47-75 \end{aligned}$ | 3 blind crossover treatment periods allowed significant results. A beneficial therapeutic effect could have been shown in $50 \%$ of the patients |
|  | Darweesh et al. 2015 Netherlands (A) | Comparing data from the first two sub cohorts of the Rotterdam Study on lifestyle factors, influencing the risk of PD | PD Cases in both studies $\mathrm{n}=94$ <br> Age $69.3 \pm 9.1$ and Age $64.5 \pm 7.9$ | No significant association between coffee consumption and the risk of developing PD could have been observed |
|  | Kumar et al. 2015 Singapore (96) | Case-control study comparing caffeine intake effects on genetic high- and low-susceptibility to PD | 812 subjects <br> n=378 cases with PD <br> $\mathrm{n}=434$ controls <br> Age 25-90 | Caffeine intake significantly reduces the risk of PD much more in those with high genetic susceptibility to PD compared to those with low genetic susceptibility to PD |
|  | Van der Mark et al. 2014 <br> Netherlands (97) | Case-control study to investigate the possible risk of alcohol, coffee or smoking on PD | PD cases $\mathrm{n}=444$, Controls $\mathrm{n}=876$ <br> Age 34-91 | Results observed some indication of a potential inverse relation between total and average coffee consumption and PD |
|  | Qi and Li 2014 <br> China <br> (B) | A dose-response metaanalysis on coffee and caffeine consumption | $\mathrm{n}=492722$ in coffee group and $n=901764$ in caffeine group | Coffee and caffeine consumption have inverse associations with the risk of developing PD Coffee at three cups/d (volume not identified): reduced risk of $\mathrm{PD}(\mathrm{RR}=0.72, \mathrm{CI}=0.65-0.81)$ |
|  | Palacios et al. 2012 US (87) | Prospective study on caffeine intake and risk of PD within the Cancer Prevention Study II Nutrition Cohort | $\mathrm{n}=63590$ women and $\mathrm{n}=$ 48532 men with an 8 year follow up <br> Mean age 71 (men) and 69 (women) | Caffeine has a protective effect against the risk of developing PD <br> Men: Caffeine at $\geq 274 \mathrm{mg} / \mathrm{d}$ ( $\geq 2$ cups coffee $/ \mathrm{d}$ ) reduces risk of PD by $50 \%(\mathrm{RR}=0.54, \mathrm{CI}=0.37-$ 0.80 ) vs $9.2 \mathrm{mg} / \mathrm{d}$ <br> Caffeine at $478 \mathrm{mg} / \mathrm{d}$ reduces risk of PD <br> ( $\mathrm{RR}=0.43, \mathrm{CI}=0.26-0.71$ ) vs $9.2 \mathrm{mg} / \mathrm{d}$ <br> Women: Caffeine at $435 \mathrm{mg} / \mathrm{d}$ ( 3.2 cups <br> coffee/d) reduces risk of PD by $40 \%(R R=0.61$, $\mathrm{CI}=0.34-1.09$ ) vs $5.6 \mathrm{mg} / \mathrm{d}$. |
|  | Liu et al. <br> 2012 <br> US <br> (88) | Prospective study concerning whether caffeine intake or smoking is associated with risk of PD | $\mathrm{n}=318260$ participants (61 year) 9-11 years follow up | Caffeine has an inverse association with the risk of developing PD <br> Coffee at $>5$ cups/d: reduced risk of PD in men ( $\mathrm{OR}=0.70, \mathrm{CI}=0.47-1.04$ ) and women <br> ( $\mathrm{OR}=0.74, \mathrm{CI}=0.42-1.29$ ) vs nonusers |
|  | Postuma et al. 2012 Canada (83) | 6-week randomized controlled trial of caffeine in PD. Primary outcome was the Epworth sleepiness scale (ESS) | $\mathrm{n}=31$ placebo group <br> Age $67.8 \pm 11.2$ <br> $\mathrm{n}=30$ caffeine group <br> Age $65.2 \pm 8.3$ | Caffeine treatment in PD patients has potential motor benefits and improved total UPDRS (United Parkinson Disease Rating Scale) by 4.7 points. There were no significant changes in the ESS-score. |
|  | Kandinov et al. 2009 Israel (112) | Retrospective analysis on the effect of coffee and tea on the onset of PD | $\mathrm{n}=278$ PD patients | Coffee consumption exceeding 3 cups per day advanced the age of PD onset by 4.8 years ( $\mathrm{p}=0.03$ ) |


| Simon et al. 2008 <br> US <br> (85) | Analysis of the data of two studies, evaluating the relationship between caffeine intake and the rate of progression of PD | $\mathrm{n}=413$ early PD cases <br> Age: patients older than 30 were included | Rate of progression of PD did not differ significantly between those in the highest and lowest quartiles for caffeine |
| :---: | :---: | :---: | :---: |
| Facheris et al. 2008 US (98) | Case-control study evaluating how genetic factors contribute to the effect of coffee on PD | $\mathrm{n}=1208$ <br> 446 case-unaffected sibling pairs and 158 caseunrelated control pairs Age 31-87 | No significant association between the ADORA2A, the CYP1A2 gene and the effect of coffee on PD could have been shown |
| Powers et al. 2008 US (99) | Case-control study to examine the association between smoking, coffee and NSAIDs and PD | $\begin{aligned} & \text { Cases } \mathrm{n}=1186 \text {, Controls } \\ & \mathrm{n}=928 \\ & \text { Age } 25-97 \end{aligned}$ | A dose-dependent inverse relation between coffee intake and the risk PD was shown with higher significance in man than women |
| Hu et al. 2007 <br> Finland (89) | Prospective study on coffee and tea consumption and the risk of PD | $\mathrm{n}=15042$ women $\mathrm{n}=14293$ <br> men <br> 200 cases had a <br> 12,9 years of follow-up <br> Age 25-74 | Coffee drinking is associated with lower risk of developing PD <br> Men:0, 1-4 cups, and $>5$ cups of coffee (100 $\mathrm{mL} /$ cup) had a hazard ratio of $1.00,0.55$ ( $\mathrm{CI}=0.26-1.15$ ) and 0.41 ( $\mathrm{CI}=0.19-0.88$ ), respectively, of PD <br> Women: $0,1-4$ cups and $>5$ cups of coffee ( $100 \mathrm{~mL} /$ cup) had a hazard ratio of $1.00,0.50$ ( $\mathrm{CI}=0.22-1.12$ ) and $0.39(\mathrm{CI}=0.17-0.89)$, respectively, for PD |
| Sääksjärvi <br> et al. 2007 <br> Finland <br> (90) | Prospective study to examine the prediction if coffee consumption on the incidence of PD | Cohort of $\mathrm{n}=6710$ participants, after a 22 -year follow-up PD cases were $\mathrm{n}=101$ <br> Age 30-75 | Results suggest that high coffee consumption ( $<10$ cups/day) lead to reduction of risk for PD, but the protective effect of coffee may vary by exposure to other factors |
| Kitagawa et al. 2007 <br> Japan <br> (86) | Prospective study, evaluating the effect of 100 mg caffeine on freeze of gait (FOG) in PD | $\mathrm{n}=16$ patients <br> Age 56-82 | Caffeine improved "total akinesia" type of FOG, but had no effect on "trembling in place." Tolerance developed to the beneficial effect of caffeine on FOG within a few months, but a 2week caffeine withdrawal period could restore the effect of caffeine |
| Hancock et al. 2007 <br> US <br> (100) | Family-based Case-Control study to examine the effects of coffee, tea and soft drinks on PD | Cases $\mathrm{n}=356$ <br> Controls $\mathrm{n}=317$, matched in age and sex <br> Age $66.1 \pm 10.7$ | Inverse associations of smoking and caffeine were shown. More than 2 cups/day were significantly inversely associated with PD ( $\mathrm{OR}=0.64$ ) |
| Evans 2006 UK <br> (101) | Case-Control study to examine the effect of coffee, tea, chocolate milk and soft drinks on PD | Cases $\mathrm{n}=150$ <br> Controls $\mathrm{n}=150$, matched in age and sex <br> Age 38-81 | Higher caffeine intake was associated with lower risk of $\mathrm{PD}(\mathrm{OR}=0.74, \mathrm{p}=0.007)$ |
| Wirdefeldt et al. 2005 Sweden (102) | Case-control study assessing the association between lifestyle factors and the risk of PD in a cotwin control study | PD cases $n=476$, Controls $\mathrm{n}=2380$ <br> (415 same sex twin pairs) Mean age $74.9 \pm 8.6$ | No association between coffee and PD could have been observed. |
| Ascherio et al. 2004 <br> US <br> (92) | Statistical analysis concerning the coffee intake and estrogen use | $\mathrm{n}=301.164$ men and $\mathrm{n}=238.058$ women 909 men and 349 women with a 10 year follow up Mean age 57(men) and 56 (women) | Consumption of caffeinated coffee was associated with a reduced PD mortality among men and among women who never used postmenopausal estrogens. |


| Ascherio et al. 2003 US (91) | Statistical analysis concerning the coffee intake and estrogen use | $\begin{aligned} & \mathrm{n}=77713 \text { women } \\ & \mathrm{n}=154 \text { women with a } 18 \\ & \text { year follow up } \\ & \text { Age } 30-55 \end{aligned}$ | Use of postmenopausal hormones was associated with a lower risk of PD among women with low caffeine intake, but with an increased risk among women with high caffeine intake |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Tan et al. } \\ & 2003 \end{aligned}$ <br> Singapore (103) | Case-control study to examine the relationship between coffee and tea intake, smoking and environmental factors and the risk of PD | Cases $\mathrm{n}=200$ <br> Controls $\mathrm{n}=200$, matched in age and sex <br> Age 43-88 | A dose-dependent protective effect of PD could have been demonstrated for coffee $(O R=0.79$, $\mathrm{p}=0.006$ ) |
| Ragonese et al. 2003 <br> Italy <br> (104) | Case-control study investigating the association between smoking, alcohol, coffee intake and PD | Cases $\mathrm{n}=150$ <br> Controls $\mathrm{n}=150$, matched in age and sex <br> Age 31-81 | Results suggest a strong inverse association between coffee drinking an PD, in ever versus never coffee drinkers were evaluated ( $O R=$ $0.16, \mathrm{p}=0.0001$ ) |
| Checkoway et al. 2002 US (105) | Case-control study, observing the relationship between smoking, alcohol and caffeine intake and the risk of PD | $\mathrm{n}=210$ cases and $\mathrm{n}=347$ controls matched in age and sex Age 37-88 | No association between risk of PD and coffee consumption or total caffeine intake |
| Paganini- <br> Hill 2001 <br> US <br> (106) | Case-control study assessing the risk factors for PD | $\begin{aligned} & \mathrm{n}=395 \text { PD cases } \\ & 2320 \text { controls } \\ & \text { Mean age } 75 \pm 6,1 \end{aligned}$ | The risk of PD was significantly reduced among coffee drinkers, who drank at least 2 cups of coffee/day $(O R=0.64)$ |
| Ascherio <br> 2001 <br> US <br> (93) | Prospective cohort study evaluating the effect of coffee on the risk for PD | $\mathrm{n}=47351$ men and $\mathrm{n}=88565$ women, $\mathrm{n}=157$ men 10 year follow up. $\mathrm{n}=131$ women 16 year follow up, Age 40-75 | Highly significant inverse association between caffeine intake and risk of PD among men ( $p=0.001$ ) |
| Ross et al. <br> 2000 <br> US <br> (94) | Prospective cohort study concerning the association between coffee and caffeine intake and PD | $\mathrm{n}=8004$ men with 102 cases with 30 years follow up Age 45-68 | Caffeine has an inverse association with the risk of developing PD. More than 421 mg of caffeine/d is associated with 5 times lower risk of developing PD vs nondrinkers ( $\mathrm{p}<0.001$ ) |
| Benedetti et <br> al. 2000 <br> US <br> (107) | Case-control study on the association between coffee intake and smoking on PD | $\mathrm{n}=202$ PD patients <br> $\mathrm{n}=202$ controls <br> Age 41-97 | Coffee was more common in controls than in cases ( $\mathrm{OR}=0.35$ ) |
| Preux et al. <br> 2000 <br> France <br> (108) | Case-control study assessing environmental factors as risk for PD | $\mathrm{n}=140$ PD patients <br> $\mathrm{n}=280$ controls <br> Mean age $71.1 \pm 7.5$ | No association between coffee intake and risk of PD |
| $\begin{aligned} & \text { Hern et al. } \\ & 2000 \\ & (95) \end{aligned}$ | Prospective cohort study on the possible protective effect of coffee for PD | $\mathrm{n}=8004, \mathrm{n}=102$ cases of PD during a 27-year followup, Average age 53 | A dose-response relationship was observed. Higher amounts of coffee intake were associated with lower risk of developing PD |
| Fall 1999 Sweden (109) | Case-control study on nutritional factors influencing the risk of PD | $\begin{aligned} & \mathrm{n}=113 \text { PD patients } \mathrm{n}=263 \\ & \text { controls } \\ & \text { Age } 30-86 \end{aligned}$ | No significant association has been found |
| Hellenbran d 1996 Germany (110) | Case-control study to examine the association between coffee, tea and the risk of PD | $\begin{aligned} & \mathrm{n}=342 \text { cases } \\ & \mathrm{n}=342 \text { controls } \\ & \text { Mean age } 56.2 \pm 6.7 \text { (cases), } \\ & 56.1 \pm 6.9 \text { (controls) } \end{aligned}$ | Cases consumed less coffee ( $\mathrm{OR}=0.27$, $\mathrm{p}=0.0003$, highest versus lowest quartile) than controls |
| Morano 1994 <br> Spain <br> (111) | Case-control study on risk factors for PD | $\begin{aligned} & \mathrm{n}=74 \text { PD patients } \\ & \mathrm{n}=148 \text { controls } \end{aligned}$ | No association between coffee drinking habits and risk of PD |


| Nefzger $\boldsymbol{e t}$ <br> al 1968 | Retrospective study on <br> Smoking and coffee | $\mathrm{n}=198$ PD patients <br> $\mathrm{n}=198$ other patients | No association between coffee consumption <br> and onset of PD. |
| :--- | :--- | :--- | :--- |
| (C) | consumption |  |  |

## Supplementary Table 3: Studies examining the effect of coffee and/or caffeine in animal model of PD

| Animal model | Bagga et al. <br> 2015 <br> US <br> (117) | Evaluation of the neuroprotective effect in the MPTP model of PD by monitoring brain regions | $\begin{aligned} & \text { C57BL5 mice (male, } 4 \\ & \text { months) } \\ & \mathrm{n}=10 \text { control } \\ & \mathrm{n}=7 \text { caffeine } \\ & \mathrm{n}=10 \text { MPTP } \\ & \mathrm{n}=8 \text { MPTP and caffeine } \end{aligned}$ | Caffeine reduces neuron damage in the striatum Caffeine increases motor function ( $60.6 \%$ improvement in grip strength). Pretreatment with caffeine provides partial neuroprotection against severe striatal degeneration in PD. |
| :---: | :---: | :---: | :---: | :---: |
|  | Sonsalla et <br> al. 2012 <br> US <br> (56) | Experimental study investigating chronic caffeine treatment of rat brains | Sprague Dawley rats $\mathrm{n}=5$ per group <br> Males Age not identified | Caffeine reduces loss of nigral dopamine cell bodies at $1^{\text {st }}$ week or $3^{\text {rd }}$ week by $94 \%$ and $69 \%$, respectively. Caffeine reduces microglia activation in the substantia nigra and protects against the loss of nigral dopamine neurons in a chronic progressive rat model of PD. |
|  | Nakaso et <br> al. 2008 <br> Japan <br> (120) | Experimental study investigating cytoprotective mechanisms of caffeine | Human dopaminergic neuroblastoma cell lines | Caffeine reduces cell death and reduces the number of apoptotic nuclei from $13.1 \%$ to $9.7 \%$ under MPP+-exposed conditions <br> Caffeine reduces caspase 3 in a dose-dependent manner by $21 \%$ |
|  | $\begin{aligned} & \text { Xu et al. } \\ & 2006 \\ & \text { US } \\ & (116) \end{aligned}$ | Experimental study on the correlation between estrogen and caffeine, concerning the neuroprotective effects of caffeine | C57BL6 mice $\mathrm{n}=3-7$ saline treatment $\mathrm{n}=4-15$ MPTP <br> Young: 10 week Old: 6-9 months | Estrogen can prevent the neuroprotective effects of caffeine in a model of PD mice Caffeine reduces MPTP-induced dopamine loss in a dose-dependent manner in male mice, with maximal effects achieved at $10 \mathrm{mg} / \mathrm{kg}$. In ovariectomized mice treated with estrogen, caffeine was neuroprotective only at higher doses ( $40 \mathrm{mg} / \mathrm{kg}$ ). |
|  | Joghataie <br> 2004 <br> Iran <br> (118) | Experimental study on the effect of caffeine to the brain of wistar rats. | Adult male Wistar rats $\mathrm{n}=72$ <br> 18 per group | Caffeine administration for 1 month could attenuate the rotational behavior in lesioned rats and protect the neurons of SNC against 6OHDA toxicity Nigrostriatal neurons within SNC were mainly preserved against neurodegenerative effects induced by the neurotoxin 6-OHDA |
|  | ```Chen et al. 2001 US (114)``` | Experimental study on the neuroprotective effects of caffeine and the inactivation of adenosine receptors | $\begin{aligned} & \text { C57BL6 mice (male } 9 \\ & \text { months) } \\ & \mathrm{n}=13 \mathrm{MPTP} \\ & \mathrm{n}=5 \text { saline } \end{aligned}$ | Caffeine ( $10 \mathrm{mg} / \mathrm{kg}$ ): residual dopamine was $40 \%$ of control vs $15 \%$ of Control Caffeine ( $20 \mathrm{mg} / \mathrm{kg}$ ): reversed MPTP-induced dopamine depletion Caffeine at higher dosage caused excessive systemic toxicity |

## Additional references

A. Darweesh SK, Koudstaal PJ, Stricker BH, Hofman A, Ikram MA. Trends in the Incidence of Parkinson Disease in the General Population. Am J Epidemiol (2016) 183(11):1018-26. doi:10.1093/aje/kwv271
B. Qi H, Li S. Dose-response meta-analysis on coffee, tea and caffeine consumption with risk of Parkinson's disease. Geriatr Gerontol Int (2014) 14(2):430-9. doi:10.1111/ggi.12123
C. Nefzger D, Quadfasel FA, Karl VC. A retrospective study of smoking in parkinsons disease. Am J Epidemiol (1968) 88(2):149-58.

## Research Strategy



Supplementary Figure 1: Flow diagram of the study selection process.

