#### **Supplementary Information (SI)**

Arsenic in groundwater in south west Ireland: occurrence, controls and hydrochemistry

Ellen McGrory<sup>a</sup>, Emma Holian<sup>b</sup>, Alberto Alvarez-Iglesias<sup>c</sup>, Norma Bargary<sup>d</sup>, Eoin McGillicuddy<sup>e</sup>, T. Henry<sup>a</sup>, E. Daly<sup>a</sup> and Liam Morrison<sup>a\*</sup>

<sup>a</sup> Earth and Ocean Sciences, School of Natural Sciences and Ryan Institute: Environmental, Marine and Energy Research, National University of Ireland, Galway, Ireland

<sup>b</sup> School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland

° HRB Clinical Research Facility, National University of Ireland, Galway, Ireland

<sup>d</sup> Centre for Health from Environment and Ryan Institute: Environmental, Marine and Energy Research, National University of Ireland, Galway, Ireland

<sup>e</sup> Department of Mathematics and Statistics, University of Limerick, Ireland

\* Corresponding author at: Earth and Ocean Sciences, School of Natural Sciences and Ryan Institute: Environmental, Marine and Energy Research, National University of Ireland, University Road, Galway, Ireland. Tel: +00353091493200; fax +00353091525005.

E-mail address: <a href="mailto:liam.Morrison@nuigalway.ie">liam.Morrison@nuigalway.ie</a> (L. Morrison)

Text 1 – Removal of locality due to anomalous arsenic

One locality from the DWS dataset was removed from any statistical analysis. In the northwest of Kerry, one borehole had a maximum arsenic value of 21,020  $\mu$ g L<sup>-1</sup> (in addition to iron, 52,340  $\mu$ g L<sup>-1</sup>) in 2008 and it results from a potential sampling artefact from the presence of high amount of suspended solids (McGrory et al., 2017). These suspended solids may have overestimated the arsenic concentration which as a result may not be reflective of arsenic concentrations within the groundwater within this locality. Leaching of arsenic from the sediment due to acid preserving may have elevated the arsenic in the sample which can give an unrealistic result. While subsequent measurements at this borehole contain lower levels of arsenic (<1-958.4  $\mu$ g L<sup>-1</sup>) no suspended solids were present. As a result of the possible sampling irregularities, this locality was removed from any statistical analysis (total of eleven analyses) for all hydrochemical parameters.

Table S1

| Date       | As     | pН          | Cond                | Fe                 | Mn                 | Na                 | K                  | Ca                 | Mg                 | TH                 |
|------------|--------|-------------|---------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
|            | μg L-1 | pH<br>units | μS cm <sup>-1</sup> | μg L <sup>-1</sup> | μg L <sup>-1</sup> | μg L <sup>-1</sup> | mg L <sup>-1</sup> | mg L <sup>-1</sup> | mg L <sup>-1</sup> | mg L <sup>-1</sup> |
| 08/10/2008 | 958.9  | 7           | 916                 | 246                | 504                | 35.4               | 1.67               | 135.1              | 14.84              | 395                |
| 20/10/2008 | 34.5   | 7           | 897                 | < 20               | < 10               | ND*                | 0.58               | 3.7                | 0.68               | 140                |
| 20/10/2008 | 21020  | 7.2         | 1010                | 52340              | 237                | 67.8               | < 0.5              | 22.6               | 2.43               | 182                |
| 20/10/2008 | 4.6    | 7           | 840                 | 24                 | 298                | 29.6               | 1.26               | 127.9              | 7.95               | 422                |
| 20/10/2008 | 356.4  | 7.3         | 1011                | < 20               | 60                 | 158.6              | 1.46               | 44.6               | 4.5                | 159                |
| 20/10/2008 | 663.7  | ND          | ND                  | 134                | 44                 | 145.4              | 1.2                | 30.2               | 3.22               | ND                 |
| 30/10/2008 | 481.4  | 7.2         | 884                 | 1636               | 914                | 31.2               | 1.98               | 152.4              | 16.81              | 480                |
| 10/11/2008 | <1     | 7.1         | ND                  | 580                | 1151               | 31.8               | 1.55               | 137.1              | 8.54               | 18                 |
| 09/12/2008 | <1     | 7.2         | 661                 | 1541               | 141                | 61.1               | 2.1                | 52.1               | 22                 | 240                |
| 09/12/2008 | <1     | 7.3         | 674                 | 1219               | 254                | 38.3               | 2.09               | 89.7               | 20.78              | 324                |
| 09/12/2008 | 7.4    | 6.8         | 655                 | 409                | 4629               | 25.7               | 3.09               | 105.9              | 7.67               | 15                 |

Site (KY\_335; Lenamore, north Kerry) which was removed from both statistical and spatial analysis with coordinates (E: 103410.4; N: 144245.6).

\* ND = not determined

| Rock type         | Rockunit                                   | Abbreviation |
|-------------------|--------------------------------------------|--------------|
| Pure Limestone    | Dinantian Pure Unbedded Limestones         | PL           |
|                   | (DPUL)                                     |              |
|                   | Dinantian Pure Bedded Limestones (DPBL)    |              |
|                   | Dinantian Dolomitised Limestones (DDL)     |              |
|                   | Precambrian Marbles (PM)                   |              |
| Impure Limestone  | Dinantian Upper Impure Limestones (DUIL)   | IL           |
| -                 | Dinantian Mixed Sandstones, Shales and     |              |
|                   | Limestones (DMSSL)                         |              |
|                   | Dinantian Lower Impure Limestones (DLIL)   |              |
| Sandstone         | Devonian Old Red Sandstones (DORS)         | SS(O/N)      |
| (ORS/NRS)         | Permo-Triassic Sandstones (PTS)            |              |
| Sandstone         | Dinantian Sandstones (DS)                  | S            |
|                   | Devonian Kiltorcan-type Sandstones (DKS)   |              |
|                   | Namurian Sandstones (NSA)                  |              |
|                   | Westphalian Sandstones (WSA)               |              |
| Schist/Gneiss     | Precambrian Quartzites, Gneisses & Schists | SG           |
|                   | (PQGS)                                     |              |
| Sandstone/Shale   | Cambrian Metasediments (CM)                | SSh(G)       |
| (Greywackes)      | Ordovician Metasediments (OM)              |              |
|                   | Silurian Metasediments and Volcanics       |              |
|                   | (SMV)                                      |              |
| Sandstone/Shale   | Dinantian (early) Sandstones, Shales and   | SSh          |
|                   | Limestones (DESSL)                         |              |
|                   | Namurian Undifferentiated (NU)             |              |
|                   | Dinantian Mudstones and Sandstones (Cork   |              |
|                   | Group) (DMSC)                              |              |
|                   | Permo-Triassic Mudstones and Gypsum        |              |
| C1 1              | (PIMG)                                     | <b>G1</b>    |
| Shale             | Namurian Shales (NSH)                      | Sh           |
|                   | Dinantian Shales and Limestones (DSL)      |              |
| D 1               | westphalian Shales (WSH)                   | D            |
| Basalt<br>Cromito | Basalts and other Volcanic rocks (BV)      | Б            |
| Granne            | (CII)                                      | U            |
| Dhualita          | (UII)<br>Ordevicion Meleonice (OM)         |              |
| Kilyonte          | Ordovicial volcanics (UV)                  |              |

Grouping of data from 'National Draft Generalised Bedrock Map (Groundwater rockunits)' into 11 new reclassifications ['Rock type']) from 27 original classifications ['Rockunit']

Data description from 'Groundwater Aquifers' dataset

| Group                      | ID  | Description                                                        |  |  |  |
|----------------------------|-----|--------------------------------------------------------------------|--|--|--|
| Karstic aquifers           | Rk  | Regionally Important Aquifer – Karstified                          |  |  |  |
|                            | Rkd | Regionally Important Aquifer - Karstified (diffuse)                |  |  |  |
|                            | Rkc | Regionally Important Aquifer - Karstified (conduit)                |  |  |  |
|                            | Lk  | Locally Important Aquifer – Karstified                             |  |  |  |
| Productive fractured       | Rf  | Regionally Important Aquifer - Fissured bedrock                    |  |  |  |
| aquifers                   | Lm  | Locally Important Aquifer - Bedrock which is Generally Moderately  |  |  |  |
|                            |     | Productive                                                         |  |  |  |
| Poorly productive aquifers | Ll  | Locally Important Aquifer - Bedrock which is Moderately Productive |  |  |  |
|                            |     | only in Local Zones                                                |  |  |  |
|                            | Pu  | Poor Aquifer – Bedrock Aquifer which are Generally Unproductive    |  |  |  |
|                            | Pl  | Poor Aquifer - Bedrock which is Generally Unproductive except for  |  |  |  |
|                            |     | Local Zones                                                        |  |  |  |

| ID | Description                      |
|----|----------------------------------|
| Х  | Rock at or near surface or karst |
| E  | Extreme                          |
| Н  | High                             |
| М  | Moderate                         |
| L  | Low                              |
| W  | Water                            |

Data description from 'Groundwater Vulnerability' dataset

Table S5

| Abbreviation | Name                                       | Geological description                  | Rock type |
|--------------|--------------------------------------------|-----------------------------------------|-----------|
| CL           | Cloonagh Limestone Formation               | Bedded bioclastic limestone             | PL        |
| CLcr         | Cracoean Reef Member                       | Unbedded calcilutite limestone          | PL        |
| DIN          | Dinantian Limestones (undifferentiated)    | Limestone                               | PL        |
| VIS          | Visean Limestones (undifferentiated)       | Undifferentiated limestone              | PL        |
| WA           | Waulsortian Limestones                     | Massive unbedded lime-mudstone          | PL        |
| BA           | Ballysteen Formation                       | Dark muddy limestone, shale             | IL        |
| DI           | Dirtoge Limestone Formation                | Bioclastic cherty grey limestone        | IL        |
| RF           | Rockfield Limestone Formation              | Well-bedded argillaceous limestone      | IL        |
| BD           | Ballydavid Formation                       | Sandstone with conglomerate             | SS(O/N)   |
| BH           | Bird Hill Formation                        | Purple siltstone & fine sandstone       | SS(O/N)   |
| BJ           | Ballinskelligs Sandstone Formation         | Purple sandstone & siltstone            | SS(O/N)   |
| BM           | Ballymore Sandstone Formation              | Rhythmically bedded sandstone           | SS(O/N)   |
| CA           | Cappagh Sandstone Formation                | Purple cross-bedded sandstone           | SS(O/N)   |
| СН           | Caha Mountain Formation                    | Purple & green sandstone & siltstone    | SS(O/N)   |
| EK           | Eask Sandstone Formation                   | Purple sandstone & siltstone            | SS(O/N)   |
| GB           | Glashabeg Conglomerate Formation           | Conglomerate & sandstone                | SS(O/N)   |
| GC           | Glenflesk Chloritic Sandstone<br>Formation | Green sandstone & purple siltstone      | SS(O/N)   |
| GCdl         | Doo Lough Pebbly Sandstone Member          | Pebbly sandstone & conglomerate         | SS(O/N)   |
| GH           | Glandahalin Formation                      | Red cross bedded siltstone & sandstone  | SS(O/N)   |
| GP           | Gun Point Formation                        | Green-grey sandstone & purple siltstone | SS(O/N)   |
| IY           | Inshaboy Formation                         | Sandstone, siltstone & mudstone         | SS(O/N)   |
| KM           | Kilmore Formation                          | Yellow - olive mudstone to sandstone    | SS(O/N)   |
| LA           | Lough Acoose Sandstone Formation           | Well-bedded grey sandstone              | SS(O/N)   |
| LK           | Lack Sandstone Formation                   | Micaceous sandstone and siltstone       | SS(O/N)   |
| SF           | St. Finans Sandstone Formation             | Green sandstone & siltstone             | SS(O/N)   |
| SH           | Slea Head Formation                        | Pebbly sandstone & conglomerate         | SS(O/N)   |
| SL           | Slaheny Sandstone Formation                | Cross-bedded sandstone & siltstone      | SS(O/N)   |
| TH           | Toe Head Formation                         | Cross-bedded sandstone & minor mudstone | SS(O/N)   |
| VS           | Valentia Slate Formation                   | Purple mudstone & siltstone             | SS(O/N)   |
| CF           | Cloone Flagstone Formation                 | Greywacke, siltstone & silty shale      | S         |
| FS           | Feale Sandstone Formation                  | Sandstone, siltstone & shale            | S         |
| ВW           | Dailynanown Sandstone Formation            | Sanustone & shale                       | 3         |

Data descriptions from '1:100,000 (Bedrock Geology)' dataset

# Table S5. (continued).

| AL   | Annascaul Formation           | Mudstone, siltstone & breccia            | SSh(G) |
|------|-------------------------------|------------------------------------------|--------|
| СМ   | Croaghmarhin Formation        | Fossiliferous green to grey siltstone    | SSh(G) |
| DP   | Drom Point Formation          | Grey siltstone with trace fossils        | SSh(G) |
| CCG  | Central Clare Group           | Sandstone, siltstone & mudstone          | SSh    |
| KNrg | Reenagough Member             | Massive & flaser-bedded sandstone        | SSh    |
| LLS  | Lower Limestone Shale         | Sandstone, mudstone & thin               | SSh    |
| NAM  | Namurian (undifferentiated)   | Shale & sandstone                        | SSh    |
| ОН   | Old Head Sandstone Formation  | Flaser-bedded sandstone & minor mudstone | SSh    |
| SHG  | Shannon Group                 | Mudstone, siltstone & sandstone          | SSh    |
| GN   | Glenoween Shale Formation     | Grey silty mudstone                      | Sh     |
| SFr  | Lough Guitane rhyolites       | Rhyolitic lavas                          | В      |
| SFv  | Lough Guitane Volcaniclastics | Massive & bedded volcaniclastic deposits | В      |

# Table S6

# Data descriptions from 'Quaternary (Sediments)' dataset

| Abbreviation | Description                                              |
|--------------|----------------------------------------------------------|
| А            | Alluvium                                                 |
| BktPt        | Blanket Peat                                             |
| Cut          | Cut over raised peat                                     |
| GDSs         | Gravels derived from Devonian sandstones                 |
| KaRck        | Kartsified bedrock outcrop or subcrop                    |
| Rck          | Bedrock outcrop or subcrop                               |
| TDSs         | Till derived from Devonian sandstones                    |
| TLPSsS       | Till derived from Lower Palaeozoic sandstones and shales |
| TLs          | Till derived from limestones                             |
| TNSSs        | Till derived from Namurian sandstones and shales         |
| Urban        | Urban                                                    |
| Wsd          | Windblown sands and dunes                                |

| First level | First level name                | Second level | Second level name                                        | Third level | Third level name                               |  |
|-------------|---------------------------------|--------------|----------------------------------------------------------|-------------|------------------------------------------------|--|
| Code (L1)   |                                 | code (L2)    |                                                          | code (L3)   |                                                |  |
| 1           | Artificial Surfaces             | 11           | Urban Fabric                                             | 112         | Discontinuous<br>urban Fabric                  |  |
|             |                                 | 14           | Artificial, Non-<br>Agricultural<br>Vegetated Areas      | 142         | Sport and Leisure<br>Facilites                 |  |
| 2           | Agricultural Areas              | 23           | Pastures                                                 | 231         | Pastures                                       |  |
|             | 2                               | 24           | Heterogeneous<br>Agricultural Areas                      | 242         | Complex<br>Cultivation<br>Patterns             |  |
|             |                                 |              |                                                          | 243         | Land Principally<br>Occupied by<br>Agriculture |  |
| 3           | Forest and<br>Seminatural Areas | 31           | Forests                                                  | 311         | Broad-Leaved<br>Forest                         |  |
|             |                                 |              |                                                          | 312         | <b>Coniferous Forest</b>                       |  |
|             |                                 |              |                                                          | 313         | Mixed Forest                                   |  |
|             |                                 | 32           | Shrub and/or<br>Herbaceous<br>Vegetation<br>Associations | 322         | Moors and<br>Heathland                         |  |
|             |                                 |              |                                                          | 324         | Transitional<br>Woodland Shrub                 |  |
|             |                                 | 33           | Open Spaces with<br>little or no<br>Vegetation           | 331         | Beaches, Dunes, and Sand Plains                |  |
|             |                                 |              | 5                                                        | 333         | Sparsely Vegetated<br>Areas                    |  |
| 4           | Wetlands                        | 41           | Inland Wetlands                                          | 411         | Island Marshes                                 |  |
|             |                                 |              |                                                          | 412         | Peat Bogs                                      |  |

Data descriptions from 'CORINE' land use dataset



**Fig. S1.** Spatial distribution of the rock types in Kerry in relation to the three datasets used in this study (where DWS = drinking water supplies, WWGAs = well water grant applications, and PWGS = public water groundwater sources).



**Fig. S2.** Spatial distribution of the aquifer classification in Kerry in relation to the three datasets used in this study (where DWS = drinking water supplies, WWGAs = well water grant applications, and PWGS = public water groundwater sources). Where LK = Locally Important Aquifer – Karstified, L1 = Locally Important Aquifer - Bedrock which is Moderately Productive only in Local Zones, Pl = Poor Aquifer - Bedrock which is Generally Unproductive except for Local Zones, Pu = Poor Aquifer – Bedrock Aquifer which are Generally Unproductive, and Rkd = Regionally Important Aquifer - Karstified (diffuse).



**Fig. S3.** Spatial distribution of the groundwater vulnerability in Kerry in relation to the three datasets used in this study (where DWS = drinking water supplies, WWGAs = well water grant applications, and PWGS = public water groundwater sources). Where E = Extreme, H = High, L = Low, M = Moderate, W = Water, and X = Rock at or near surface or karst.



Fig. S4. Spatial distribution of the rock geology (1:100,000) in Kerry in relation to the three datasets used in this study (where DWS = drinking water supplies, WWGAs = well water grant applications, and PWGS = public water groundwater sources). Where AL = AnnascaulFormation, BJ = Ballinskelligs Sandstone Formation, BD = Ballydavid Formation, BM = Ballymore Sandstone Formation, BW = Ballynahown Sandstone Formation, BA = Ballysteen Formation, BH = Bird Hill Formation, CH = Caha Mountain Formation, CA = Cappagh Sandstone Formation, CCG = Clare Central Group, CL = Cloonagh Limestone Formation, CLcr = Cracoean Reef Member, CM = Croaghmarhin Formation, DIN = Dinantian Limestones (undifferentiated), DI = Dirtoge Limestone Formation, GCdl = Doo Lough Pebbly Sandstone Member, DP = Drom Point Formation, EK = Eask Sandstone Formation, FS = Feale Sandstone Formation, GH = Glandahalin Formation, GB = Glashabeg Conglomerate Formation, GC = Glenflesk Chloritic Sandstone Formation, GN = Glenoween Shale Formation, GP = Gun Point Formation, IY = Inshaboy Formation, KM = Kilmore Formation, LK = Lack Sandstone Formation, LA = Lough Acoose Sandstone Formation, SFv = Lough Guitane Volcaniclastics, SFr = Lough Guitane Rhyolites, LLS = Lower Limestone Shale, NAM = Namurian (undifferentiated), OH = Old Head Sandstone Formation, KNrg = Reenagough Member, RF =

Rockfield Limestone Formation, SHG = Shannon Group, SL = Slaheny Sandstone Formation, SH = Slea Head Formation, SF = St. Finans Sandstone Formation, TH = Toe Head Formation, VS = Valentia Slate Formation, VIS = Visean Limestones (undifferentiated), and WA = Waulsortian Limestones. Inclusion of all the unit formations were not included for map clarity with only those having geochemical data points within them present. However other relevant formations not presented in the map, but in the region of Kerry included BF = Ballyferriter Formation, BJag = Ardnagluggen Sandstone Member, BJdh = Doulus Head Conglomerate Member, BL = Ballydeenlea Formation, BN = Ballynane Formation, BT = Ballymartin Formation, Bp = Basalt, CC = Caherconree Formation, CF = Cloone Flagstone Formation, CG = Coosglass Slate Formation, CN = Camillan Sandstone Formation, CO = Coumeenoole Sandstone Formation, CS = Clare Shale Formation, D = Dolerite and Grabbro, DG = Derrymore Glen Formation, FC = Ferriters Cove Formation, FM = Foilnamahagh Formation, FN = Farran Sandstone Formation, GBcm = Coosmore Conglomerate Member, GBco = Coosgorrib Conglomerate Member, GBcs = GBcs Coosglass Conglomerate Member, IC = Inch Conglomerate Formation, IO = Inishnabro Formation, IV = Inishvickillane Formation, KNat = Ardaturrish Member, KNam = Ardamanagh Member, LP = Landing Place Formation, LS = Lough Slat Conglomerate Formation, MC = Mill Cove Formation, ORS = Old Red Sandstone (undifferentiated), PA = Parsonage & Corgrig Lodge Formation, PGG = Pointagare Group, SC = Sauce Creek Formation, SMG = Slieve Mish Group, SWG = Smerwick Group, TC = Trabeg Conglomerate Formation, VhBg = Bealtra Volcaniclastic Rocks, and VhBg = Beginish Island Intrusion.



**Fig. S5.** Spatial distribution of the quaternary categories in Kerry in relation to the three datasets used in this study (where DWS = drinking water supplies, WWGAs = well water grant applications, and PWGS = public water groundwater sources). Where A = Alluvium, AcEsk = Eskers comprised of gravels of acidic reaction, Ag = Alluvium (gravelly), Ar = Airfield/Airport, BktPt = Blanket Peat, Cut = Cut over raised peat, Em = Embankment, GDSs = gravels derived from Devonian sandstones, GNSSs = gravels derived from Namurian sandstones and shales, Ind = industrial, KaRck = Karstified bedrock outcrop or subcrop, L = Lacustrine sediments, La = Landfill, MGs = Marine gravel and sands (often raised), Mbs = Marine beach sands, Mesc = Estuarine silts and clays, P = Pier, Rck = Bedrock outcrop or subcrop, Sc = Scree, TBi = Till derived from basic igneous rocks, TDSs = Till derived from Devonian sandstones, TNSSs = Till derived from Namurian sandstones and shales, TdlMr = Tidal marsh, U = Urban, W = Water, Ws = Windblown sands, and Wsd = Windblown sands and dunes.



Fig. S6. Spatial distribution of the CORINE categories in Kerry in relation to the three datasets used in this study (where DWS = drinking water supplies, WWGAs = well water grant applications, and PWGS = public water groundwater sources). Where 111 = Artificial Surfaces, Urban Fabric, Continuous Urban Fabric, 112 = Artificial Surfaces, Urban Fabric, **D**iscontinuous Urban Fabric, 121 = **A**rtificial Surfaces, Industrial, Commercial and Transport Units, Industrial or Commercial Units, 123 = Artificial Surfaces, Industrial, Commercial and Transport Units, Port Areas, 124 = Artificial Surfaces, Industrial, Commercial and Transport Units, Airports, 131 = Artificial Surfaces, Mine, Dump and Construction Sites, Mineral Extraction Sites, 141 = Artificial Surfaces, Artificial, Non-Agricultural Vegetated Areas, Green Urban Areas, 142 = Artificial Surfaces, Artificial, Non-Agricultural Vegetated Areas, Sport and Leisure Facilites, 211 = Agricultural Areas, Arable Land, Non-irrigated Arable Land, 231 =Agricultural Areas, Pastures, Pastures, 242 =Agriculture Areas, Heterogeneous Agricultural Areas, Complex Cultivation Patterns, 243 = Agriculture Areas, Heterogeneous Agricultural Areas, Land Principally Occupied by Agriculture, 311 = Forest and Seminatural Areas, Forests, Broad-Leaved Forest, 312 = Forest and Seminatural Areas, Forests, Coniferous Forest, 313 = Forest and Seminatural Areas, Forests, Mixed Forest, 321 = Forest and

Seminatural Areas, Shrub and/or Herbaceous Vegetation Associations, Natural Grassland, 322 = Forest and Seminatural Areas, Shrub and/or Herbaceous Vegetation Associations, Moors and Heathland, 324 = Forest and Seminatural Areas, Shrub and/or Herbaceous Vegetation Associations, Transitional Woodland Shrub, 331 = Forest and Seminatural Areas, Open Spaces with little or no Vegetation, Beaches, Dunes, and Sand Plains, 332 = Forest and Seminatural Areas, Open Spaces with little or no Vegetation, Beaches, Dunes, Bare Rock, 333 = Forest and Seminatural Areas, Open Spaces with little or no Vegetation, Beaches, Sparsely Vegetated Areas, 411 = Wetlands, Inland Wetlands, Inland Marshes, 412 = Wetlands, Inland Wetlands, Peat Bogs, 421 = Wetlands, Coastal Wetlands, Salt Marshes, 423 = Wetlands, Coastal Wetlands, Intertidal Flats, 511 = Water Bodies, Inland Waters, Water Courses, 512 = Water Bodies, Inland Waters, Water Bodies, 521 = Water Bodies, Marine Waters, Coastal Lagoons, 522 = Water Bodies, Marine Waters, Estuaries, and 523 = Water Bodies, Marine Waters, Sea and Ocean. (For each CLC (2012) classification the three classes are denoted with a bold first letter.)

Number of sites per parameter for each rock type classification. Rock type classes Schist/Gneiss, Rhyolite and Granite had no locations in the Kerry region) (Groupings in bold to be removed from prior to statistical analysis, i.e. Basalt).

|                | 1   |     |      |     |     | /   |     |     |     |     |
|----------------|-----|-----|------|-----|-----|-----|-----|-----|-----|-----|
| Rock type      | As  | pН  | Cond | Fe  | Mn  | Na  | Κ   | Ca  | Mg  | TH  |
| Pure Limestone | 31  | 28  | 28   | 31  | 31  | 27  | 27  | 27  | 26  | 19  |
| Impure         | 6   | 6   | 6    | 6   | 6   | 6   | 6   | 6   | 6   | 5   |
| Limestone      |     |     |      |     |     |     |     |     |     |     |
| Sandstone      | 275 | 266 | 258  | 275 | 275 | 269 | 267 | 268 | 257 | 198 |
| (ORS/NRS)      |     |     |      |     |     |     |     |     |     |     |
| Sandstone      | 35  | 36  | 34   | 36  | 36  | 35  | 35  | 34  | 31  | 31  |
| Schist/Gneiss  | NA  | NA  | NA   | NA  | NA  | NA  | NA  | NA  | NA  | NA  |
| Sandstone and  | 11  | 10  | 10   | 11  | 11  | 11  | 11  | 11  | 10  | 7   |
| Shale          |     |     |      |     |     |     |     |     |     |     |
| (Greywackes)   |     |     |      |     |     |     |     |     |     |     |
| Sandstone and  | 100 | 100 | 95   | 101 | 100 | 100 | 96  | 98  | 92  | 81  |
| Shale          |     |     |      |     |     |     |     |     |     |     |
| Shale          | 7   | 7   | 7    | 7   | 7   | 7   | 7   | 7   | 6   | 6   |
| Basalt         | 2   | 2   | 2    | 2   | 2   | 2   | 2   | 2   | 2   | 2   |
| Granite        | NA  | NA  | NA   | NA  | NA  | NA  | NA  | NA  | NA  | NA  |
| Rhyolite       | NA  | NA  | NA   | NA  | NA  | NA  | NA  | NA  | NA  | NA  |
|                |     |     |      |     |     |     |     |     |     |     |

Number of sites per parameter for each aquifer classification. Aquifer classes Rk, Rkc, Rf, Lm and Pu had no locations in the Kerry region. (Groupings in bold to be removed from prior to statistical analysis, i.e. Lk).

| Aquifer | As  | рН  | Cond | Fe  | Mn  | Na  | К   | Ca  | Mg  | TH  |
|---------|-----|-----|------|-----|-----|-----|-----|-----|-----|-----|
| Rk      | NA  | NA  | NA   | NA  | NA  | NA  | NA  | NA  | NA  | NA  |
| Rkd     | 27  | 24  | 24   | 27  | 27  | 24  | 23  | 24  | 23  | 19  |
| Rkc     | NA  | NA  | NA   | NA  | NA  | NA  | NA  | NA  | NA  | NA  |
| Lk      | 4   | 4   | 4    | 4   | 4   | 3   | 4   | 3   | 3   | 0   |
| Rf      | NA  | NA  | NA   | NA  | NA  | NA  | NA  | NA  | NA  | NA  |
| Lm      | NA  | NA  | NA   | NA  | NA  | NA  | NA  | NA  | NA  | NA  |
| Ll      | 355 | 348 | 334  | 357 | 356 | 352 | 344 | 347 | 328 | 270 |
| Pu      | NA  | NA  | NA   | NA  | NA  | NA  | NA  | NA  | NA  | NA  |
| Pl      | 81  | 79  | 78   | 81  | 81  | 78  | 80  | 79  | 76  | 60  |

Number of sites per parameter for each vulnerability classification. Vulnerability class W had no locations in the Kerry region.

| Vulnerability | As  | pН  | Cond | Fe  | Mn  | Na  | K   | Ca  | Mg  | TH  |
|---------------|-----|-----|------|-----|-----|-----|-----|-----|-----|-----|
| Х             | 65  | 63  | 60   | 65  | 65  | 64  | 65  | 64  | 59  | 50  |
| E             | 162 | 157 | 150  | 162 | 162 | 158 | 157 | 158 | 153 | 117 |
| Н             | 115 | 112 | 110  | 116 | 115 | 113 | 110 | 112 | 107 | 90  |
| М             | 92  | 90  | 87   | 92  | 92  | 88  | 88  | 86  | 84  | 67  |
| L             | 33  | 33  | 33   | 34  | 34  | 34  | 31  | 33  | 27  | 25  |
| W             | NA  | NA  | NA   | NA  | NA  | NA  | NA  | NA  | NA  | NA  |

Number of sites per parameter for each rock classification. Rock class Cm, GCdl KM, LLS had no locations in the Kerry region. (Groupings in bold to be removed from prior to statistical analysis, i.e. BA, BD, BH, BW, CL, CLcr, CM, DI, DP, EK, GCdl, GP, IY, KM, KNrg, LA, LK, LLS, OH, RF, SFr, SFv, SH and TH).

| Rock | As | pН | Cond | Fe | Mn | Na | Κ  | Ca | Mg | TH |
|------|----|----|------|----|----|----|----|----|----|----|
| AL   | 7  | 6  | 6    | 7  | 7  | 7  | 7  | 7  | 7  | 5  |
| BA   | 3  | 3  | 3    | 3  | 3  | 3  | 3  | 3  | 3  | 2  |
| BD   | 2  | 2  | 2    | 2  | 2  | 2  | 2  | 2  | 2  | 2  |
| BH   | 4  | 4  | 4    | 4  | 4  | 4  | 4  | 4  | 4  | 2  |
| BJ   | 59 | 56 | 55   | 59 | 59 | 59 | 56 | 57 | 54 | 42 |
| BM   | 21 | 20 | 20   | 21 | 21 | 21 | 21 | 21 | 20 | 7  |
| BW   | 4  | 4  | 4    | 4  | 4  | 4  | 4  | 4  | 4  | 4  |
| CA   | 20 | 19 | 20   | 20 | 20 | 19 | 20 | 19 | 18 | 18 |
| CCG  | 9  | 10 | 10   | 10 | 10 | 10 | 10 | 10 | 9  | 9  |
| CF   | 8  | 9  | 9    | 9  | 9  | 9  | 9  | 9  | 9  | 7  |
| СН   | 33 | 33 | 33   | 33 | 33 | 32 | 33 | 33 | 31 | 27 |
| CL   | 3  | 3  | 3    | 3  | 3  | 3  | 3  | 3  | 3  | 2  |
| CLcr | 2  | 2  | 2    | 2  | 2  | 1  | 2  | 1  | 1  | 1  |
| СМ   | 1  | 1  | 1    | 1  | 1  | 1  | 1  | 1  | 1  | 0  |
| DI   | 1  | 1  | 1    | 1  | 1  | 1  | 1  | 1  | 1  | 1  |
| DIN  | 7  | 7  | 7    | 7  | 7  | 6  | 6  | 6  | 5  | 2  |
| DP   | 3  | 3  | 3    | 3  | 3  | 3  | 3  | 3  | 2  | 2  |
| ЕК   | 1  | 1  | 1    | 1  | 1  | 1  | 1  | 1  | 1  | 1  |
| FS   | 23 | 23 | 21   | 23 | 23 | 22 | 22 | 21 | 18 | 20 |
| GB   | 6  | 6  | 6    | 6  | 6  | 6  | 6  | 6  | 6  | 2  |
| GC   | 25 | 25 | 23   | 25 | 25 | 25 | 25 | 25 | 23 | 17 |
| GCdl | 1  | 1  | 0    | 1  | 1  | 1  | 1  | 1  | 1  | 1  |
| GH   | 7  | 6  | 6    | 7  | 7  | 6  | 6  | 6  | 6  | 4  |
| GN   | 7  | 7  | 7    | 7  | 7  | 7  | 7  | 7  | 6  | 6  |
| GP   | 4  | 4  | 4    | 4  | 4  | 4  | 4  | 4  | 3  | 3  |
| IY   | 1  | 1  | 1    | 1  | 1  | 1  | 1  | 1  | 1  | 1  |
| KM   | 2  | 1  | 1    | 2  | 2  | 1  | 1  | 1  | 1  | 0  |
| KNrg | 2  | 2  | 2    | 2  | 2  | 2  | 2  | 2  | 2  | 2  |
| LA   | 4  | 4  | 4    | 4  | 4  | 4  | 4  | 4  | 4  | 4  |
| LK   | 2  | 2  | 2    | 2  | 2  | 2  | 2  | 2  | 2  | 1  |
| LLS  | 2  | 2  | 2    | 2  | 2  | 2  | 2  | 2  | 2  | 0  |
| NAM  | 50 | 49 | 44   | 50 | 49 | 50 | 46 | 48 | 45 | 42 |
| ОН   | 3  | 3  | 3    | 3  | 3  | 3  | 3  | 3  | 3  | 2  |
| RF   | 2  | 2  | 2    | 2  | 2  | 2  | 2  | 2  | 2  | 2  |
| SF   | 24 | 24 | 22   | 24 | 24 | 24 | 23 | 24 | 24 | 18 |
| SFr  | 1  | 1  | 1    | 1  | 1  | 1  | 1  | 1  | 1  | 1  |
| SFv  | 1  | 1  | 1    | 1  | 1  | 1  | 1  | 1  | 1  | 1  |
| SH   | 3  | 3  | 3    | 3  | 3  | 3  | 3  | 3  | 3  | 2  |
| SHG  | 34 | 34 | 34   | 34 | 34 | 33 | 33 | 33 | 31 | 26 |
| SL   | 5  | 5  | 4    | 5  | 5  | 5  | 5  | 5  | 4  | 5  |
| ТН   | 3  | 3  | 3    | 3  | 3  | 3  | 3  | 3  | 3  | 2  |
| VIS  | 9  | 8  | 8    | 9  | 9  | 8  | 8  | 8  | 8  | 7  |
| VS   | 48 | 46 | 44   | 48 | 48 | 46 | 46 | 46 | 46 | 39 |
| WA   | 10 | 8  | 8    | 10 | 10 | 9  | 8  | 9  | 9  | 7  |

Number of sites per parameter for each quaternary classification. Quaternary class Wsd had no locations in the Kerry region for certain parameters. (Groupings in bold to be removed from prior to statistical analysis, i.e. Cut, GDSs, KaRck, TLs and Wsd).

| ID     | As  | pН  | Cond | Fe  | Mn  | Na  | K   | Ca  | Mg  | TH  |
|--------|-----|-----|------|-----|-----|-----|-----|-----|-----|-----|
| Α      | 6   | 6   | 6    | 6   | 6   | 5   | 5   | 5   | 5   | 2   |
| BktPt  | 28  | 29  | 28   | 29  | 29  | 27  | 28  | 27  | 21  | 20  |
| Cut    | 3   | 3   | 3    | 3   | 3   | 3   | 3   | 3   | 3   | 3   |
| GDSs   | 3   | 3   | 3    | 3   | 2   | 3   | 3   | 3   | 3   | 2   |
| KaRck  | 1   | 1   | 1    | 1   | 1   | 1   | 1   | 1   | 1   | 1   |
| Rck    | 59  | 55  | 54   | 59  | 59  | 58  | 59  | 59  | 57  | 42  |
| TDSs   | 214 | 208 | 200  | 214 | 214 | 210 | 206 | 208 | 201 | 157 |
| TLPSsS | 9   | 9   | 9    | 9   | 9   | 9   | 9   | 9   | 8   | 6   |
| TLs    | 3   | 2   | 2    | 3   | 3   | 2   | 2   | 2   | 2   | 2   |
| TNSSs  | 133 | 131 | 126  | 134 | 134 | 131 | 127 | 128 | 121 | 111 |
| Urban  | 5   | 5   | 5    | 5   | 5   | 5   | 5   | 5   | 5   | 3   |
| Wsd    | 3   | 3   | 3    | 3   | 3   | 3   | 3   | 3   | 3   | 0   |

Number of sites per parameter for each CORINE (L1) classification.

|                |              |     |     |      |     | -   |     |     |     |     |     |
|----------------|--------------|-----|-----|------|-----|-----|-----|-----|-----|-----|-----|
| First<br>level | First level  | As  | рН  | Cond | Fe  | Mn  | Na  | K   | Ca  | Mg  | TH  |
| Code           | nume         |     |     |      |     |     |     |     |     |     |     |
| coue           |              |     |     |      |     |     |     |     |     |     |     |
| 1              | Artificial   | 21  | 21  | 21   | 21  | 21  | 20  | 20  | 20  | 20  | 8   |
|                | surfaces     |     |     |      |     |     |     |     |     |     |     |
| 2              | Agricultural | 348 | 337 | 328  | 349 | 348 | 339 | 332 | 335 | 321 | 269 |
|                | areas        |     |     |      |     |     |     |     |     | -   |     |
| 3              | Forest and   | 37  | 37  | 36   | 38  | 38  | 37  | 38  | 37  | 34  | 27  |
|                | Seminatural  |     |     |      |     |     |     |     |     |     |     |
|                | Areas        |     |     |      |     |     |     |     |     |     |     |
| 4              | Wetlands     | 61  | 60  | 55   | 61  | 61  | 61  | 61  | 61  | 55  | 45  |

Number of sites per parameter for each CORINE (L2) classification. Land use class Artificial, Non-Agricultural Vegetated Areas had no locations in the Kerry region for certain parameters. (Groupings in bold to be removed from prior to statistical analysis, i.e. Artificial, Non-Agricultural Vegetated Areas and Open Spaces with little or no Vegetation).

| Second | Second            | level  | As  | pН  | Cond | Fe  | Mn  | Na  | Κ   | Ca  | Mg  | TH  |
|--------|-------------------|--------|-----|-----|------|-----|-----|-----|-----|-----|-----|-----|
| level  | name              |        |     |     |      |     |     |     |     |     |     |     |
| Code   |                   |        |     |     |      |     |     |     |     |     |     |     |
| 11     | Urban Fabric      |        | 20  | 20  | 20   | 20  | 20  | 19  | 19  | 19  | 19  | 8   |
| 14     | Artificial, Non-  |        | 1   | 1   | 1    | 1   | 1   | 1   | 1   | 1   | 1   | 0   |
|        | Agricultur        | al     |     |     |      |     |     |     |     |     |     |     |
|        | Vegetated         | Areas  |     |     |      |     |     |     |     |     |     |     |
| 23     | Pastures          |        | 262 | 252 | 246  | 263 | 263 | 256 | 249 | 253 | 241 | 200 |
| 24     | Heterogene        | ous    | 86  | 85  | 82   | 86  | 85  | 83  | 83  | 82  | 80  | 69  |
|        | Agricultural      |        |     |     |      |     |     |     |     |     |     |     |
|        | Areas             |        |     |     |      |     |     |     |     |     |     |     |
| 31     | Forests           |        | 21  | 21  | 21   | 22  | 22  | 21  | 22  | 21  | 19  | 14  |
| 32     | Shrub and/o       | or     | 13  | 13  | 12   | 13  | 13  | 13  | 13  | 13  | 12  | 12  |
|        | Herbaceous        | 5      |     |     |      |     |     |     |     |     |     |     |
|        | Vegetation        |        |     |     |      |     |     |     |     |     |     |     |
|        | Associations      |        |     |     |      |     |     |     |     |     |     |     |
| 33     | Open S            | Spaces | 3   | 3   | 3    | 3   | 3   | 3   | 3   | 3   | 3   | 1   |
|        | with little or no |        |     |     |      |     |     |     |     |     |     |     |
|        | Vegetation        | L      |     |     |      |     |     |     |     |     |     |     |
| 41     | Inland Wet        | lands  | 61  | 60  | 55   | 61  | 61  | 61  | 61  | 61  | 55  | 45  |

Number of sites per parameter for each CORINE (L3) classification. Land use class Sport and Leisure Facilities had no locations in the Kerry region for certain parameters. (Groupings in bold to be removed from prior to statistical analysis, i.e. Sport and Leisure Facilities, Complex Cultivation Patterns, Broad-Leaved Forest, Mixed Forest, Moors and Heathland, Beaches, Dunes, and Sand Plains, Sparsely Vegetated Areas and Inland Marshes).

| Third | Third level name | As  | pН  | Cond | Fe  | Mn  | Na  | Κ   | Ca  | Mg  | TH  |
|-------|------------------|-----|-----|------|-----|-----|-----|-----|-----|-----|-----|
| level |                  |     |     |      |     |     |     |     |     |     |     |
| code  |                  |     |     |      |     |     |     |     |     |     |     |
| 112   | Discontinuous    | 20  | 20  | 20   | 20  | 20  | 19  | 19  | 19  | 19  | 8   |
|       | urban Fabric     |     |     |      |     |     |     |     |     |     |     |
| 142   | Sport and        | 1   | 1   | 1    | 1   | 1   | 1   | 1   | 1   | 1   | 0   |
|       | Leisure          |     |     |      |     |     |     |     |     |     |     |
|       | Facilities       |     |     |      |     |     |     |     |     |     |     |
| 231   | Pastures         | 262 | 252 | 246  | 263 | 263 | 256 | 249 | 253 | 241 | 200 |
| 242   | Complex          | 2   | 1   | 1    | 2   | 2   | 1   | 1   | 1   | 1   | 0   |
|       | Cultivation      |     |     |      |     |     |     |     |     |     |     |
|       | Patterns         |     |     |      |     |     |     |     |     |     |     |
| 243   | Land Principally | 84  | 84  | 81   | 84  | 83  | 82  | 82  | 81  | 79  | 69  |
|       | Occupied by      |     |     |      |     |     |     |     |     |     |     |
|       | Agriculture      |     |     |      |     |     |     |     |     |     |     |
| 311   | Broad-Leaved     | 5   | 5   | 5    | 5   | 5   | 5   | 5   | 5   | 5   | 3   |
|       | Forest           |     |     |      |     |     |     |     |     |     |     |
| 312   | Coniferous       | 11  | 12  | 12   | 12  | 12  | 11  | 12  | 11  | 9   | 9   |
|       | Forest           |     |     |      |     |     |     |     |     |     |     |
| 313   | Mixed Forest     | 5   | 4   | 4    | 5   | 5   | 5   | 5   | 5   | 5   | 2   |
| 322   | Moors and        | 1   | 1   | 1    | 1   | 1   | 1   | 1   | 1   | 1   | 1   |
|       | Heathland        |     |     |      |     |     |     |     |     |     |     |
| 324   | Transitional     | 12  | 12  | 11   | 12  | 12  | 12  | 12  | 12  | 11  | 11  |
|       | Woodland Shrub   |     |     |      |     |     |     |     |     |     |     |
| 331   | Beaches, Dunes,  | 2   | 2   | 2    | 2   | 2   | 2   | 2   | 2   | 2   | 0   |
|       | and Sand Plains  |     |     |      |     |     |     |     |     |     |     |
| 333   | Sparsely         | 1   | 1   | 1    | 1   | 1   | 1   | 1   | 1   | 1   | 1   |
|       | Vegetated        |     |     |      |     |     |     |     |     |     |     |
|       | Areas            |     |     |      |     |     |     |     |     |     |     |
| 411   | Inland Marshes   | 2   | 2   | 2    | 2   | 2   | 2   | 2   | 2   | 2   | 0   |
| 412   | Peat Bogs        | 59  | 58  | 53   | 59  | 59  | 59  | 59  | 59  | 53  | 45  |



**Fig. S7.** Spatial distribution of groundwater quality parameters divided into five intervals: (**a**) pH, (**b**) conductivity, (**c**) Fe, (**d**) Mn, (**e**) Na, (**f**) K, (**g**) Ca, (**h**) Mg, and (**i**) total hardness.



Fig. S7. (continued).



Fig. S7. (continued).



**Fig. S8.** Hot-spot distribution of groundwater quality parameters: (**a**) pH, (**b**) conductivity, (**c**) Fe, (**d**) Mn, (**e**) Na, (**f**) K, (**g**) Ca, (**h**) Mg, and (**i**) total hardness.





Fig. S8. (continued).



Fig. S8. (continued).



**Fig. S9.** ECDF plot displaying the empirical distribution function of pH in relation to (**a**) rock type, (**b**) aquifer, (**c**) groundwater vulnerability, (**d**) rock, (**e**) quaternary, (**f**) CORINE(L1), (**g**) CORINE(L2), and (**h**) CORINE(L3). The indicator parameter guide value of pH of 6.5 and 9.5 is represented as two black vertical lines.



Fig. S9. (continued).



**Fig. S10.** ECDF plot displaying the empirical distribution function of conductivity in relation to (**a**) rock type, (**b**) aquifer, (**c**) groundwater vulnerability, (**d**) rock, (**e**) rock (Pure Limestone and Sandstone (ORS/NRS)), (**f**) rock (Pure Limestone and Sandstone), (**g**) rock (Pure Limestone and Sandstone and Shale), (**h**) quaternary, (**i**) CORINE(L1), (**j**) CORINE(L2), and (**k**) CORINE(L3). The indicator parameter guide value of conductivity of 2500  $\mu$ S cm<sup>-1</sup> is represented as a black vertical line.



Fig. S10. (continued).



**Fig. S11.** ECDF plot displaying the empirical distribution function of iron in relation to (**a**) rock type, (**b**) aquifer, (**c**) groundwater vulnerability, (**d**) rock, (**e**) quaternary, (**f**) CORINE(L1), (**g**) CORINE(L2), and (**h**) CORINE(L3). The indicator parameter guide value of iron of 200  $\mu$ g L<sup>-1</sup> is represented as a black vertical line.



Fig. S11. (continued).



**Fig. S12.** ECDF plot displaying the empirical distribution function of manganese in relation to (a) rock type, (b) aquifer, (c) groundwater vulnerability, (d) rock, (e) rock (Sandstone (ORS/NRS) and Sandstone and Shale), (f) quaternary, (g) CORINE(L1), (h) CORINE(L2), and (i) CORINE(L3). The indicator parameter guide value of manganese of 50  $\mu$ g L<sup>-1</sup> is represented as a black vertical line.



Fig. S12. (continued).

Sodium ECDF plots for rock type, aquifer, vulnerability, rock, quaternary, CORINE (L1), CORINE (L2), and CORINE (L3) are illustrated in Fig. S13a-k (SI). The distributions of sodium concentrations differ across rock type ( $p \approx 0.000$ ) with pairwise comparisons revealing differences between Pure Limestone and Sandstone (p = 0.020), between Pure Limestone and Sandstone (ORS/NRS) ( $p \approx 0.000$ ), and between Pure Limestone and Sandstone/Shale (p =0.017). Looking at rock groupings, there are differences in sodium ( $p \approx 0.000$ ) with pairwise comparisons showing significant differences between BJ and GH ( $p \approx 0.000$ ), BJ and SHG ( $p \approx 0.000$ ), BJ and VIS ( $p \approx 0.000$ ), BJ and WA (p = 0.003), GC and SHG (p = 0.006), GC and VIS (p = 0.020), GH and NAM (p = 0.020), NAM and SHG ( $p \approx 0.000$ ), NAM and VIS (p =0.011), and between NAM and WA (p = 0.040). The data also suggests differences across quaternary groupings (p = 0.020) with pairwise comparisons highlighting the comparison of TNSSs and TDSs in particular (p = 0.011).

Aquifer groupings display significant differences in sodium ( $p \approx 0.000$ ) with pairwise comparisons showing differences between Rkd and Ll ( $p \approx 0.000$ ) and between Rkd and Pl (p = 0.001). Regarding groundwater vulnerability groupings there is evidence that the distributions of sodium concentration differ ( $p \approx 0.000$ ), pairwise comparisons show differences between L and E (p = 0.000), L and H (p = 0.007), L and M (p = 0.002), and between L and X (p = 0.008).

The distribution of sodium concentrations differ across the CORINE (L1) groupings (p = 0.017), with pairwise comparisons showing one pair having significant difference, Artificial Surfaces and Wetlands (p = 0.048). CORINE (L2) groupings display differences in the global test (p = 0.006) however no differences existed between the groups applying pairwise testing. CORINE (L3) groupings also show statistical significance in the global test (p = 0.011) but no

statistical significance between any pair when applying pairwise comparisons with correction for multiple testing.



**Fig. S13.** ECDF plot displaying the empirical distribution function of sodium in relation to (**a**) rock type, (**b**) aquifer, (**c**) groundwater vulnerability, (**d**) rock, (**e**) rock (Pure Limestone and Sandstone (ORS/NRS)), (**f**) rock (Pure Limestone and Sandstone), (**g**) rock (Pure Limestone and Sandstone and Shale), (**h**) quaternary, (**i**) CORINE(L1), (**j**) CORINE(L2), and (**k**) CORINE(L3). The indicator parameter value of sodium of 200 mg L<sup>-1</sup> is represented as a black vertical line.



Fig. S13. (continued).

Potassium ECDF plots for rock type, aquifer, vulnerability, rock, quaternary, CORINE (L1), CORINE (L2), and CORINE (L3) are illustrated in Fig. S14a-1 (SI). Potassium concentrations display significant differences across rock types ( $p \approx 0.000$ ) with pairwise comparisons indicating differences between Pure Limestone and Sandstone (p = 0.013), Pure Limestone and Sandstone (ORS/NRS) ( $p \approx 0.000$ ), Pure Limestone and Sandstone/Shale (p = 0.008), and between Sandstone/Shale and Sandstone (ORS/NRS) (p  $\approx$  0.000). The distributions of potassium differs across the rock groupings ( $p \approx 0.000$ ) with pairwise comparisons specifying differences between the groups of BJ and GH ( $p \approx 0.000$ ), BJ and SHG (p = 0.001), BJ and VIS ( $p \approx 0.000$ ), BJ and WA ( $p \approx 0.000$ ), BM and GH (p = 0.012), BM and VIS (p = 0.004), BM and WA (p = 0.020), CA and GH (p = 0.002), CA and VIS ( $p \approx 0.000$ ), CA and WA (p =0.002), CH and GN ( $p \approx 0.000$ ), CH and VIS ( $p \approx 0.000$ ), CH and WA ( $p \approx 0.000$ ), FS and GH (p = 0.004), FS and VIS (p = 0.030), GC and GH (p = 0.001), GC and SHG (p = 0.022), GC and VIS (p = 0.003), GC and WA (p = 0.002), GH and NAM (p = 0.036), GH and SF (p = 0.036), GH and SF (p = 0.003), GH and SF (p = 0.0030.004), GH and VS (p = 0.003), NAM and VIS (p = 0.018), SF and VIS (p = 0.002), SF and WA (p = 0.024), VIS and VS (p = 0.002), and VS and WA (p = 0.040). For quaternary groupings the distributions of potassium concentrations differ (p  $\approx 0.000$ ) with pairwise comparisons indicating differences between the groups of TNSSs and Rck (p = 0.040) and between TNSSs and TDSs ( $p \approx 0.000$ ).

The observations provide evidence that the distribution of potassium concentrations differ across aquifer groupings ( $p \approx 0.000$ ) with pairwise comparisons showing differences between Rkd and Ll ( $p \approx 0.000$ ) and between Rkd and Pl ( $p \approx 0.000$ ). The distributions of potassium differs across groundwater vulnerability groupings (p = 0.005) with pairwise comparisons revealing differences between E and X (p = 0.040), between L and X (p = 0.008), and between M and X (p = 0.008).

Each of three CORINE groupings show statistical significant differences in potassium concentrations. Pairwise comparisons within CORINE (L1) categorisation show differences between the groups Artificial Surfaces and Wetlands ( $p \approx 0.000$ ) and between Agricultural Areas and Wetlands (p = 0.020). Pairwise comparisons within CORINE (L2) groupings also show differences between the groups Urban Fabric and Heterogeneous Agricultural Areas (p = 0.0030), Urban Fabric and Inland Wetlands ( $p \approx 0.000$ ), Pastures and Heterogeneous Agricultural Areas (p = 0.002), and between Pastures and Inland Wetlands (p = 0.002). For CORINE (L3) categorisation pairwise comparisons specified differences between the groups Discontinuous Urban Fabric and Land Principally Occupied by Agriculture (p = 0.004), Discontinuous Urban Fabric and Peat Bogs ( $p \approx 0.000$ ), Pastures and Land Principally Occupied by Agriculture (p = 0.003), and between Pastures and Peat Bogs (p = 0.002).



**Fig. S14.** ECDF plot displaying the empirical distribution function of potassium in relation to (a) rock type, (b) aquifer, (c) groundwater vulnerability, (d) rock, (e) rock (Pure Limestone and Sandstone (ORS/NRS)), (f) rock (Pure Limestone and Sandstone), (g) rock (Pure Limestone and Sandstone and Shale), (h) rock (Sandstone (ORS/NRS) and Sandstone), (i) quaternary, (j) CORINE(L1), (k) CORINE(L2), and (l) CORINE(L3). The interim guideline value of potassium of 5 mg L<sup>-1</sup> is represented as a black vertical line.



Fig. S14. (continued).

Calcium ECDF plots for rock type, aquifer, vulnerability, rock, quaternary, CORINE (L1), CORINE (L2), and CORINE (L3) are presented in Fig. S15a-k (SI). The distributions of calcium concentration differ across rock type ( $p \approx 0.000$ ) with pairwise comparisons indicating differences between Pure Limestone and Sandstone ( $p \approx 0.000$ ), Pure Limestone and Sandstone (ORS/NRS) ( $p \approx 0.000$ ), and between Pure Limestone and Sandstone/Shale ( $p \approx 0.000$ ). For rock type grouping the calcium concentration distributions differ ( $p \approx 0.000$ ) with pairwise comparisons showing differences between groups BJ and VIS ( $p \approx 0.000$ ), BJ and WA ( $p \approx$ 0.000), CH and VIS (p = 0.041), CH and WA (p = 0.044), GC and VIS (p = 0.006), GC and WA (p = 0.023), GH and NAM ( $p \approx 0.000$ ), NAM and SHG (p = 0.005), NAM and VIS (p =0.002), NAM and WA (p = 0.003), SF and VIS (p = 0.015), VIS and VS (p = 0.007), and between VS and WA (p = 0.006). The observations provide no evidence that the distributions of calcium concentration differ across quaternary groupings.

The distributions of calcium concentration differ across aquifer groupings ( $p \approx 0.000$ ) with pairwise comparisons showing differences between Rkd and Ll ( $p \approx 0.000$ ) and between Rkd and Pl ( $p \approx 0.000$ ). Groundwater vulnerability groupings also display differences in calcium concentrations (p = 0.006) with pairwise comparisons showing a difference exists between E and M (p = 0.034).

No differences in the distribution of calcium concentration across CORINE (L1), CORINE (L2), and CORINE (L3) groupings were observed.



**Fig. S15.** ECDF plot displaying the empirical distribution function of calcium in relation to (**a**) rock type, (**b**) aquifer, (**c**) groundwater vulnerability, (**d**) rock, (**e**) rock (Pure Limestone and Sandstone (ORS/NRS)), (**f**) rock (Pure Limestone and Sandstone), (**g**) rock (Pure Limestone and Sandstone and Shale), (**h**) quaternary, (**i**) CORINE(L1), (**j**) CORINE(L2), and (**k**) CORINE(L3). The interim guideline value of calcium of 200 mg L<sup>-1</sup> is represented as a black vertical line.



Fig. S15. (continued).

Magnesium ECDF plots for rock type, aquifer, vulnerability, rock, quaternary, CORINE (L1), CORINE (L2), and CORINE (L3) are illustrated in Fig. S16a-i (SI). The distribution of magnesium concentrations differ across rock type ( $p \approx 0.000$ ) with pairwise comparisons indicating differences between Sandstone (ORS/NRS) and Sandstone/Shale ( $p \approx 0.000$ ). Considering rock groupings, there is evidence of differences ( $p \approx 0.000$ ) with pairwise comparisons showing differences between the groups CCG and SF (p = 0.011), CCG and VS (p = 0.038), CF and SF ( $p \approx 0.000$ ), CF and VS (p 0.002), SF and SHG (p = 0.010), and between SHG and VS (p = 0.002). Quaternary groupings display significant differences ( $p \approx 0.000$ ) with pairwise comparisons showing differences between TNSSs and Rck (p = 0.041) and between TNSSs and TDSs ( $p \approx 0.000$ ).

The observations provide no evidence of a difference in the distribution of magnesium concentrations in relation to aquifer groupings, but suggest a difference across groundwater vulnerability groupings (p = 0.009). Pairwise comparisons found differences between X and H (p = 0.032), and between X and M (p = 0.044).

The distribution of magnesium concentrations did not differ across the CORINE groupings.



**Fig. S16.** ECDF plot displaying the empirical distribution function of magnesium in relation to (a) rock type, (b) aquifer, (c) groundwater vulnerability, (d) rock, (e) rock (Sandstone (ORS/NRS) and Sandstone and Shale), (f) quaternary, (g) CORINE(L1), (h) CORINE(L2), and (i) CORINE(L3). The interim guideline value of magnesium of 50 mg L<sup>-1</sup> is represented as a black vertical line.



Fig. S16. (continued).

Text 6 - Total Hardness

Total hardness ECDF plots for rock type, aquifer, vulnerability, rock, quaternary, CORINE (L1), CORINE (L2), and CORINE (L3) are given in Fig. S17a-j (SI). Distributions of hardness concentration across rock type were significantly different (p = 0.003) and pairwise comparisons indicated differences in particular between Sandstone (ORS/NRS) and Sandstone/Shale (p = 0.049). Looking across the categories of there is evidence of a difference in hardness concentration ( $p \approx 0.000$ ) with pairwise comparisons showing differences between the groups BJ and SHG (p = 0.025), FS and SHG (p = 0.041), and between SHG and VS (p 0.049). The observations give no evidence to suggest the distribution of hardness concentrations differ in quaternary groupings.

For aquifer groupings the distributions of hardness concentrations differ (p = 0.040) with pairwise comparisons showing differences between groups Rkd and Ll (p = 0.046). The observations provided no evidence of differences in the distribution of hardness concentration across groundwater vulnerability groupings.

The distribution of hardness concentrations did not differ across the CORINE groupings, however pairwise comparisons indicated differences between CORINE (L1) groups Artificial Surfaces and Agricultural Areas (p = 0.013), Artificial Surfaces and Forests and Seminatural Areas (p = 0.006), and between Artificial Surfaces and Wetlands (p = 0.042).



**Fig. S17.** ECDF plot displaying the empirical distribution function of total hardness in relation to (**a**) rock type, (**b**) aquifer, (**c**) groundwater vulnerability, (**d**) rock, (**e**) rock (Sandstone (ORS/NRS) and Sandstone), (**f**) rock (Sandstone (ORS/NRS) and Sandstone and Shale), (**g**) quaternary, (**h**) CORINE(L1), (**i**) CORINE(L2), and (**j**) CORINE(L3). The interim guideline value of total hardness 200 mg  $L^{-1}$  is represented as a black vertical line.



Fig. S17. (continued).



**Fig. S18.** Spatial distribution of arsenic in groundwater divided into five intervals overlain on the rock geology (1:100,000) map. Please refer to Fig. S4 for legend descriptions.

| Date       | As                 | pН          | Cond                | Fe                 | Mn     | Na     | K                  | Ca                 | Mg                 | TH                 | Cu     | Zn     |
|------------|--------------------|-------------|---------------------|--------------------|--------|--------|--------------------|--------------------|--------------------|--------------------|--------|--------|
|            | μg L <sup>-1</sup> | pH<br>units | μS cm <sup>-1</sup> | μg L <sup>-1</sup> | μg L-1 | μg L-1 | mg L <sup>-1</sup> | mg L <sup>-1</sup> | mg L <sup>-1</sup> | mg L <sup>-1</sup> | μg L-1 | μg L-1 |
| 01/11/2006 | 2.8                | 8.6         | 418                 | < 10               | < 5    | ND     | 3.16               | 25.5               | ND                 | ND                 | 136    | ND     |
| 03/04/2008 | 9.47               | ND          | ND                  | 166                | < 20   | 21.2   | 0.71               | 43.2               | 10.57              | ND                 | <25    | < 20   |
| 28/05/2008 | 12.9               | 7.7         | 405                 | 112                | < 10   | 22.5   | 0.64               | 41.6               | 10.88              | 173                | 143    | 32     |
| 16/07/2008 | 9.8                | ND          | ND                  | 65                 | 20     | 22.3   | 1.42               | 41.6               | 10.34              | ND                 | <25    | 106    |
| 16/07/2008 | 10.7               | ND          | ND                  | 94                 | < 10   | 21.9   | 0.63               | 44                 | 10.32              | ND                 | 1904   | 44     |
| 16/07/2008 | 19.1               | ND          | ND                  | 132                | < 10   | 19.8   | 0.55               | 40                 | 9.39               | ND                 | 57     | 18     |
| 16/07/2008 | 12.3               | ND          | ND                  | 24                 | 40     | 21.4   | 0.61               | 43.1               | 10.22              | ND                 | <25    | 23     |
| 16/07/2008 | 14.5               | ND          | ND                  | 27                 | 26     | 20.8   | 0.59               | 43.4               | 9.89               | ND                 | <25    | 26     |
| 16/07/2008 | 11.2               | ND          | ND                  | 89                 | < 10   | 21     | 0.64               | 45.9               | 9.87               | ND                 | <25    | < 15   |
| 16/07/2008 | 10.8               | ND          | ND                  | 82                 | < 10   | 21.7   | 0.61               | 44.1               | 10.34              | ND                 | 25     | < 15   |
| 21/04/2009 | 2.3                | 7.4         | 383                 | 258                | 203    | 22.2   | 0.72               | 44.6               | 12.53              | 165                | <25    | 38     |
| 08/05/2009 | 1.6                | ND          | 359                 | 225                | 15     | 22.7   | 0.83               | 44.2               | 13.02              | ND                 | <25    | 44     |
| 08/05/2009 | < 1                | ND          | 354                 | 194                | < 10   | 21.8   | 0.74               | 42.1               | 12.26              | ND                 | <25    | 55     |
| 14/10/2009 | 6.62               | 7           | 415                 | 254                | 516    | 17.8   | 0.79               | 43.8               | 15.04              | 176                | <25    | < 20   |
| 21/10/2009 | 5.23               | 7.2         | 345                 | 392                | 142    | 17.5   | 0.76               | 43                 | 13.74              | 187                | <25    | < 20   |
| 26/01/2010 | 14.7               | 7.3         | 376                 | < 20               | 10     | 22     | ND                 | 47.5               | 13.92              | 158                | <25    | < 15   |
| 10/05/2010 | 3.044              | 7.3         | 355                 | 91                 | < 10   | 23.7   | 0.86               | 47.1               | 12.92              | ND                 | 33     | 16     |
| 21/02/2012 | 1.19               | 7.4         | 338                 | < 20               | < 20   | 23.3   | 0.82               | 44.5               | 11.09              | ND                 | <25    | < 20   |

| Table S16                                                                         |    |
|-----------------------------------------------------------------------------------|----|
| Site (KY 410; Rosdohan, south Kerry) with elevated copper (E:72385.8; N: 64639.7) | ). |

\* ND = not determined

| Site (KY_  | ite (KY_434; Slaheny, east Kerry) with elevated copper (E: 100598.9; N: 71364.4). |             |                     |        |        |        |                    |                    |                    |                    |                    |        |  |
|------------|-----------------------------------------------------------------------------------|-------------|---------------------|--------|--------|--------|--------------------|--------------------|--------------------|--------------------|--------------------|--------|--|
| Date       | As                                                                                | pН          | Cond                | Fe     | Mn     | Na     | К                  | Ca                 | Mg                 | TH                 | Cu                 | Zn     |  |
|            | μg L-1                                                                            | pH<br>units | μS cm <sup>-1</sup> | μg L-1 | μg L-1 | μg L-1 | mg L <sup>-1</sup> | mg L <sup>-1</sup> | mg L <sup>-1</sup> | mg L <sup>-1</sup> | μg L <sup>-1</sup> | μg L-1 |  |
| 18/12/2008 | 5.8                                                                               | 7.5         | 378                 | 124    | 180    | 5.4    | 0.82               | 14.4               | 18.39              | 183                | 2827               | 1810   |  |
| 22/02/2012 | <1                                                                                | 7.4         | 369                 | < 40   | < 20   | 16.7   | 0.62               | 46                 | 17.47              | 185                | <25                | < 20   |  |

**Table S17**Site (KY 434; Slaheny, east Kerry) with elevated copper (E: 100598.9; N: 71364.4).

| Date      | As                 | pН          | Cond                | Fe                 | Mn                 | Na                 | K                  | Ca                 | Mg                 | TH                 | Cu                 | Zn                 |
|-----------|--------------------|-------------|---------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
|           | μg L <sup>-1</sup> | pH<br>units | µS cm <sup>-1</sup> | μg L <sup>-1</sup> | μg L <sup>-1</sup> | μg L <sup>-1</sup> | mg L <sup>-1</sup> | mg L <sup>-1</sup> | mg L <sup>-1</sup> | mg L <sup>-1</sup> | μg L <sup>-1</sup> | μg L <sup>-1</sup> |
| 14-Sep-04 | < 0.3              | 6.3         | 216                 | < 20               | 27                 | 18.3               | ND                 | ND                 | ND                 | ND                 | 90                 | ND                 |
| 05-Jul-05 | 0.23               | 6.2         | 210                 | 71                 | 16                 | 17                 | ND                 | ND                 | ND                 | ND                 | 63                 | ND                 |
| 29-Nov-05 | 0.48               | 6.4         | ND                  | < 20               | 31                 | 15.3               | ND                 | ND                 | ND                 | ND                 | 36                 | ND                 |
| 20-Mar-06 | < 0.3              | 6           | 219                 | < 20               | 25                 | 16.5               | ND                 | ND                 | ND                 | ND                 | <25                | ND                 |
| 09-Oct-06 | 0.13               | 5.9         | 155                 | < 20               | 11                 | 12.7               | ND                 | 11.8               | ND                 | ND                 | 155                | ND                 |
| 14-Dec-06 | < 0.3              | ND          | ND                  | ND                 | ND                 | ND                 | ND                 | ND                 | ND                 | ND                 | ND                 | ND                 |
| 29-Jan-07 | < 1                | 6.1         | 159                 | 56                 | < 20               | 12                 | 1.4                | 10.4               | 2.87               | ND                 | 31                 | 21                 |
| 29-Jan-07 | < 1                | ND          | ND                  | 44                 | < 20               | 4.2                | < 0.5              | 3.4                | 0.95               | ND                 | 2421               | 138                |
| 17-Apr-07 | < 1                | 5.8         | 228                 | 155                | 18                 | 15                 | 1.7                | 17.7               | 4.34               | ND                 | 6104               | 1990               |
| 17-Apr-07 | < 1                | 6.2         | 232                 | 129                | 50                 | 14.7               | 4.02               | 18.2               | 4.36               | ND                 | 5466               | 110                |
| 17-Apr-07 | < 1                | 5.9         | 208                 | 69                 | < 10               | 14                 | 1.45               | 16.4               | 4.06               | ND                 | 72                 | 24                 |
| 17-Apr-07 | < 1                | 5.9         | 247                 | 74                 | < 10               | 14.9               | 2.96               | 17.4               | 4.37               | ND                 | 15580              | 212                |
| 30-Apr-07 | 0.688              | ND          | 213                 | 69                 | < 10               | 15.1               | 1.48               | 19.3               | ND                 | ND                 | 1393               | 1615               |
| 23-Jul-07 | < 1                | 7.1         | 54                  | < 40               | < 20               | 6.9                | < 0.5              | 1.7                | 1.32               | ND                 | <12                | < 20               |
| 17-Sep-07 | < 0.5              | 6.8         | 46                  | 39                 | 5.92               | 5.7                | 0.52               | 1.3                | 1.05               | ND                 | 24                 | 9.26               |
| 25-Oct-07 | < 0.5              | 6.2         | 121                 | 38                 | 12                 | 16                 | ND                 | 7.8                | 3.91               | 34                 | 21                 | < 15               |
| 03-Dec-07 | < 0.12             | 6.4         | 66                  | 32                 | < 10               | 6.4                | < 0.5              | 3.3                | 1.41               | ND                 | <25                | < 15               |
| 26-May-08 | 0.121              | 7.8         | 66                  | < 20               | < 10               | 6.5                | < 0.5              | 2.6                | 1.16               | ND                 | <25                | < 15               |
| 10-Jun-08 | < 1                | 6.5         | 86                  | 55                 | < 20               | 8.1                | 1.02               | 6.5                | 1.6                | ND                 | <12                | < 20               |
| 18-Aug-08 | < 1                | 6.3         | 197                 | 130                | < 20               | 15.2               | 1.41               | 17.2               | 4.06               | ND                 | 277                | 20                 |
| 02-Dec-08 | < 0.12             | 7           | 54                  | < 20               | < 10               | 6.4                | < 0.5              | 2.7                | 1.13               | ND                 | <25                | < 15               |
|           |                    |             |                     |                    |                    |                    |                    |                    |                    |                    |                    |                    |

Site (KY\_410; Killorglin 048A, west Kerry) with elevated copper (E: 70355.5; N: 96568.6).

\* ND = not determined

Table S19Site (KY\_273; Inchicorrigane West, east Kerry) with elevated copper (E: 102760.9; N: 97937.8).

|           | /                  |             |                     |                    |                    |                    |                    |                    |                    |                    |                    |                    |
|-----------|--------------------|-------------|---------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| Date      | As                 | pН          | Cond                | Fe                 | Mn                 | Na                 | K                  | Ca                 | Mg                 | TH                 | Cu                 | Zn                 |
|           | μg L <sup>-1</sup> | pH<br>units | μS cm <sup>-1</sup> | μg L <sup>-1</sup> | μg L <sup>-1</sup> | μg L <sup>-1</sup> | mg L <sup>-1</sup> | mg L <sup>-1</sup> | mg L <sup>-1</sup> | mg L <sup>-1</sup> | μg L <sup>-1</sup> | μg L <sup>-1</sup> |
| 10-May-07 | 7.5                | 6.5         | 364                 | 1013               | 1439               | 12.1               | 1.23               | 32.1               | 15.85              | 185                | <25                | < 20               |
| 14-Apr-08 | 14.7               | 6.6         | 387                 | 1738               | 1684               | 14.5               | 1.21               | 36.1               | 17.66              | 208                | 142                | 21                 |
| 13-May-08 | 5.3                | 6.6         | 383                 | 666                | 1585               | 14.7               | 1.27               | 36.6               | 18.6               | 8                  | 218                | 27                 |
| 21-Oct-08 | 41.7               | 6.4         | 403                 | 473                | 388                | 12.6               | 1.14               | 38.6               | 15.27              | 263                | <25                | 23                 |
| 07-Apr-09 | 2.4                | 6.4         | 426                 | 200                | < 20               | 18.2               | 10.71              | 41.9               | 18.79              | 171                | <25                | < 20               |
|           |                    |             |                     |                    |                    |                    |                    |                    |                    |                    |                    |                    |

#### References

McGrory, E.R., Brown, C., Bargary, N., Williams, N.H., Mannix, A., Zhang, C., Henry, T.,

Daly, E., Nicholas, S., Petrunic, B.M., Lee, M., Morriosn, L., 2017. Arsenic contamination of drinking water in Ireland: A spatial analysis of occurrence and potential risk. *Science of the Total Environment* **579**, 1863-1875.