
Supplementary Material:
Quantifying motor task performance by bounded
rational decision theory

1 DERIVATION OF EQS. (5) AND (6)

In the following, we assume the notation and definitions from Section 2.1 of the main text. All optimizations
are over the set of probability densities on A ⊂ R.

Lemma S1. For any β > 0 and fixed prior density p0, the optimization problem

max
p(a|w)

[
Eρ(w)

[
Ep(a|w) [V (a, w)]

]
− 1

β Eρ(w) [DKL (p(a|w)‖p0(a))]
]

(S1)

is equivalent to the constrained optimization problem

max
p(a|w)

Eρ(w)
[
Ep(a|w) [V (a, w)]

]
s.t. Eρ(w) [DKL (p(a|w)‖p0(a))] ≤ Cβ , (S2)

where Cβ := Eρ(w)
[
DKL

(
p∗β(a|w)‖p0(a)

)]
, and p∗β denotes the probability density that maximizes (S1),

more precisely,

p∗β(a|w) =
1

Z(w)
p0(a) e

βV (a,w) (S3)

with normalization constant Z(w) :=
∫
A p0(a) e

βV (a,w) da.

Proof. The optimization problem (S1) is the variational formulation of (S2) with Lagrange multiplier β−1

(see for example Everett, 19631). For the proof of (S3), we first show that the functional J given by

J [p] :=
∑
w∈W

ρ(w)
[
Ep(a|w)[V (a, w)]− 1

βDKL(p(a|w)‖p0(a)) + λEp(a|w)[1]
]

(S4)

is strictly concave and therefore has a unique maximum. Note that the last term in J has been added for the
extra constraint that p(a|w) must be normalized. Since the expectations of V and 1 are linear in p(a|w),
the strict concavity of J follows from the strict convexity of DKL in the first argument, i.e.

DKL(tp1 + (1− t)p2‖q) < tDKL(p1‖q) + (1− t)DKL(p2‖q) , (S5)

whenever p1 6= p2, pi 6= q for i = 1, 2 almost everywhere (outside of a set of measure 0), and 0 < t < 1.
Inequality (S5) follows from the non-negativity of the Kullback-Leibler divergence as follows: For p1 6= p2,

1 Hugh Everett, Generalized Lagrange Multiplier Method for Solving Problems of Optimum Allocation of Resources, Operations Research, Vol. 11, No. 3
(1963), pp. 399-417.
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pi 6= q for i = 1, 2 almost everywhere, and 0 < t < 1, we have

DKL(tp1 + (1− t)p2‖q)− tDKL(p1‖q) + (1− t)DKL(p2‖q)

= t

∫
A
p1(a) log

tp1(a) + (1− t)p2(a)
q(a)

da+ (1− t)
∫
A
p2(a) log

tp1(a) + (1− t)p2(a)
q(a)

da

−t
∫
A
p1(a) log

p1(a)

q(a)
da− (1− t)

∫
A
p2(a) log

p2(a)

q(a)
da

= t

∫
A
p1(a) log

tp1(a) + (1− t)p2(a)
p1(a)

da+ (1− t)
∫
A
p2(a) log

tp1(a) + (1− t)p2(a)
p2(a)

da

= −tDKL(p1‖tp1 + (1− t)p2)− (1− t)DKL(p2‖tp1 + (1− t)p2)
< 0 ,

where we have used that DKL(p‖p0) > 0 with equality if and only if p = p0 almost everywhere. This
proves (S5). In particular, J has a unique maximum p∗, which satisfies

δJ

δp
(a, w)

∣∣∣∣
p=p∗

= 0 (S6)

for almost every a ∈ A and w ∈ W . Since

δJ

δp
(a, w) = V (a, w)− 1

β
log

p(a|w)
p0(a)

− 1

β
+ λ ,

we obtain from (S6)
p(a|w) = p0(a) e

βV (a,w)−1+βλ ,

where λ ∈ R must be chosen such that
∫
A p(a|w)da = 1, i.e. e1−βλ =

∫
A p0(a) e

βV (a,w) da =: Z(w),
which proves (S3). This concludes the proof of Lemma S1.

Lemma S2. The optimization problem

max
p0(a),p(a|w)

[
Eρ(w)

[
Ep(a|w) [V (a, w)]

]
− 1

β Eρ(w) [DKL (p(a|w)‖p0(a))]
]

(S7)

is equivalent to
max
p(a|w)

[
Eρ(w)

[
Ep(a|w) [V (a, w)]

]
− 1

β I(W ;A)
]

(S8)

where I(W ;A) denotes the mutual information between the random variables W and A with joint
distribution p(a, w) := ρ(w)p(a|w). Moreover, the unique solution can be found by a Blahut-Arimoto-type
algorithm, which consists of iterating the equations

p(a|w) =
1

Z(w)
p(a) eβV (a,w) (S9)

p(a) =
∑
w∈W

ρ(w)p(a|w) (S10)

until convergence is achieved.
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Proof. Optimizing for the prior p0 in (S7) has a unique solution p∗0, since the Kullback-Leibler divergence
is also strictly convex in the second entry due to the strict concavity of the logarithm. Similarly as in the
proof of Lemma S1, setting the functional derivative of J in (S4) with respect to p0 to zero, where the
normalization term for the posterior is replaced by a normalization term for the prior p0, i.e. λEp0 [1], yields

∑
w

ρ(w)
1

β

p(a|w)
p0(a)

+ λ = 0

which shows that p∗0(a) =
∑

w ρ(w)p(a|w), i.e. the optimal prior is the marginal of the posterior. Hence,

Eρ(w)
[
DKL(p(a|w)‖p∗0(a))

]
=
∑
w∈W

∫
A
p(a, w) log

p(a, w)

p(a)ρ(w)
da = I(W ;A)

where p(a, w) := ρ(w)p(a|w). This proves the equivalence of (S7) and (S8). Finally, note that (S8) is
equivalent to the classic rate distortion problem with −V as distortion function, for which the convergence
of the alternating Blahut-Arimoto optimization algorithm given by Eqs. (S9)-(S10) has been proved for
example in Csiszár, 19752. This concludes the proof of Lemma S2.

2 I. Csiszár, I-divergence geometry of probability distributions and minimization problems, The Annals of Probability, Vol. 3, No. 1 (1975), pp. 146-158.

Frontiers 3



Supplementary Material

2 SUPPLEMENTARY TABLES

TABLE S1 | Average information in bit for each subject and each condition. S1−S10 index the ten different subjects. RT1 is the fast reaction time
condition, RT2 is the slow reaction time condition. The target probabilities were uniform (ρu) or non-uniform (ρnu).

ρu

ρnu

S 1 S 2 S 3 S 4 S 5

RT1 RT2 RT1 RT2 RT1 RT2 RT1 RT2 RT1 RT2

1.641 1.494 1.657 1.697 1.458 1.555 1.328 1.431 1.640 1.570

1.169 1.148 0.954 1.043 0.999 1.104 1.062 1.075 1.147 1.112

ρu

ρnu

S 6 S 7 S 8 S 9 S 10

RT1 RT2 RT1 RT2 RT1 RT2 RT1 RT2 RT1 RT2

1.163 1.442 1.218 1.520 1.246 1.729 1.444 1.674 1.388 1.529

0.742 0.998 1.024 0.983 0.881 1.147 1.003 1.102 1.125 1.165

TABLE S2 | Average utility for each subject and each condition. Utility was binary depending on whether the angular coordinate of the movement
endpoint aligned with the angular coordinate interval of the target. S1−S10 index the ten different subjects. RT1 is the fast reaction time condition,
RT2 is the slow reaction time condition. The target probabilities were uniform (ρu) or non-uniform (ρnu).

ρu

ρnu

S 1 S 2 S 3 S 4 S 5

RT1 RT2 RT1 RT2 RT1 RT2 RT1 RT2 RT1 RT2

0.945 0.939 0.976 0.975 0.939 0.965 0.913 0.941 0.939 0.959

0.954 0.957 0.854 0.927 0.917 0.961 0.954 0.960 0.952 0.958

ρu

ρnu

S 6 S 7 S 8 S 9 S 10

RT1 RT2 RT1 RT2 RT1 RT2 RT1 RT2 RT1 RT2

0.874 0.948 0.890 0.959 0.852 0.980 0.912 0.970 0.898 0.939

0.722 0.920 0.954 0.937 0.885 0.957 0.922 0.960 0.937 0.957
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3 SUPPLEMENTARY FIGURES

FIGURE S1 | Specification of the angular target distance ∆φ in the experimental design. For the fast and slow reaction time condition RT1 and
RT2 subjects perform with different endpoint variability σRT1

and σRT2
. Here we present an example based on measured endpoint variability

of subject S4. This variability is mapped into a mutual information Iφ,σ(W,X) that quantifies how well targets w can be told apart when just
looking at the movement endpoints x belonging to each target. Naturally, this depends on the distance ∆φ between targets. If targets are in
exactly the same location (∆φ = 0) they cannot be distinguished (Iφ,σ = 0). If targets are very far apart (∆φ � σ), they can be told apart
perfectly (Iφ,σ = Imax) and movement variability is irrelevant. For intermediate distance ∆φ the difference ∆Iφ in mutual information for the
two reaction time conditions is non-zero, because the target distance is on the same order of magnitude as σ. We set an angular distance of
∆φ = 2.5, because this belongs to a range of ∆φ-values where ∆Iφ for different reaction times is most sensitive.
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FIGURE S2 | Endpoint variance across experimental blocks. The recorded trial sequences were analyzed for each subject individually. The
standard deviation σ is computed for all trial blocks with a sliding window of 200 trials. (A) Over the course of the experiment endpoint variances
slightly decreased and indicate that subjects were still improving their task performance due to learning. (B) Within blocks of particular conditions
(defined by reaction time and world state distribution), endpoint variance remains relatively stable and suggests no systematic effects of fatigue.
The median over subjects is shown in black for trial blocks of all six experimental conditions.
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FIGURE S3 |Mean movement trajectories for the two different reaction time conditions for each subject under uniform target distribution. Trajectory
path towards uniformly distributed targets were rotated by target angles and averaged for fast (RT1) and slow (RT2) reaction times. Trajectories
have similar shape for individual subjects. There is no systematic difference between movement paths in the two reaction time conditions.
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FIGURE S4 | Mean movement speeds for the two different reaction time conditions for each subject under uniform target distribution. Subjects’
movement speed during movement execution were averaged for fast (RT1) and slow (RT2) reaction times. Speed profiles have their maximum
midway. Movements performed under the fast reaction time condition have on average a slightly higher maximum speed. To control for the effect
of movement speed during execution on endpoint variance, we selected a “high-speed” subset of trajectories in the slow reaction time condition
that match on average the speed of the fast reaction time condition. The mean speed profiles of this subset are shown in red.
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A B

FIGURE S5 | Standard deviation of movement trajectories for the two different reaction time conditions for each subject under uniform target
distribution. In the fast reaction time condition RT1, variance is systematically higher than in the slow reaction time condition RT2. This difference
remains when considering a subset of trajectories in RT2 that is matched for speed and marked in red in the figure–compare Supplementary
Figure S4. The increase in movement variability can therefore not be explained by the small difference in peak movement speed, but must be
related to the shortened planning phase. Panel (A) shows standard deviations in the x-dimension, panel (B) in the y-dimension.
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FIGURE S6 | Motor execution noise. Different efficiency frontiers arise for different levels of motor execution noise. In the absence of execution
noise (σ̃ = 0), motor planning can precisely determine the endpoint of the movement. In this case the expected utility will be the highest (compared
to σ̃ > 0) and information just measures uncertainty arising from the imperfect planning process. For higher levels of execution noise, the
efficiency frontier moves downward on the utility axis, including the maximal achievable utility. In this case information comprises uncertainty
arising both from planning and execution processes. Here, σ̃expw denotes the experimentally determined target-specific movement noise of a
particular subject and illustrates the pertinent efficiency frontier.

A B

FIGURE S7 | Comparison of discrete and continuous mutual information. Continuous information is computed for an interval [wmin, wmax] =

[−4.7◦,+4.7◦]. Discrete mutual information is computed for the four targets in our experiment. Panel (A) shows mutual information I(W ;X) as a
function of endpoint spread σ. For σ-values occuring in the experiment the two curves are very similar, for small σ there is a deviation. In the
continuous case with arbitrarily small σ, arbitrarily large information values can be achieved, as arbitrarily many targets can be distinguished. In the
discrete case mutual information levels off as there are only finitely many targets that can be distinguished. Panel (B) plots discrete and continuous
mutual information against each other for different target distances ∆φ. For the target distance ∆φ = 2.5 and the experimentally observed
variances, continuous and discrete information are virtually identical. Therefore, we can consider our discrete setup as a valid approximation of
the continuous case.
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