Appendix

A Simplified generative model

(i) Emitters independence A first assumption is that two transition processes are independent,
ie. Pr(Z,U) =Pr(Z)Pr(U) so that:

(z,u) ~ Pr(Z,Ula, zg,uy) = Pr(Z|a, zp, wo)Pr(U|a, zp, uo)

(ii) End-effector control An additional assumption is that the controlled transition process is
relatively “fast” in comparison with the uncontrolled one (for, e.g, saccades can be realized in a
100-200 ms interval). In consequence we assimilate the motor command a with a setpoint (or
posture) w in the actuator space, that is supposed to be reached at short notice by the motor
apparatus once the command is emitted, under classical stability/controllability constraints. This
entails that, consistently with the ‘end-effector” ballistic control setup (Mussa-Ivaldi and Sollal, 2004]),
u is independent from uyg, i.e.:

u ~ Pr(Ula)

The motor command a then corresponds to the desired end-orientation of the sensor, here con-
sidered as a setpoint in the actuators space, either expressed in actuators or endpoint coordinates
(with hardware-implemented detailed effector response function). Under that perspective, the effec-
tor acts on the sensors position and orientation so as to achieve a certain perspective (or view) over
the external scene, and the controlled emitter u is now called a viewpoint.

(iii) Uncontrolled environment The third important assumption is that the motor command
a is not expected to affect the uncontrolled latent emitter z, i.e.

z ~ Pr(Z|zo)

so that z should depend only on the external dynamics (the external “uncontrolled” process).

(iv) Static assumption Under a scene decoding task, it is rather common to consider the envi-
ronment as “static” (Butko and Movellan) 2010). This fourth assumption means, in short, that:

Pr(Z|zo) = §(Z, zo)

with 0 the Knonecker symbol. The uncontrolled latent emitter z is thus expected to capture all
relevant information about the current scene, while remaining invariant throughout the decoding
process.

Last, the observation & may rely on both emitters z and w, i.e.

x ~ Pr(X|z,u) (39)

Each observation x is generated from a mixed emitter (z,w), with w the controlled part of the
emitter and z the uncontrolled part. Note that z is said the latent state out of habit, though both
u and z contribute to the generation of x.

For notational simplicity, we absorb here the execution noise (Van Beers et al., [2004) in the
measure process, i.e..  ~ Pr(X|z,U)Pr(Ul|a). Then, by notational abuse, we assimilate in the rest



of the paper u (the controlled emitter) with @ (the motor command), so that a single variable u = a
should be used for both. Each different u is thus both interpreted as a motor command and as an
emitter. As a motor command, it is controllable, i.e. determined by a controller. As an emitter, it
monitors the generation of the sensory field, in combination with the latent state z.

B Viewpoint-dependent variational encoding setup

The variational encoding perspective (Hinton and Zemel, |1994) was originally developed to train
unsupervised autoencoder neural networks. If x is the original data, the corresponding code z is
generated by a distribution ¢, i.e. z ~ ¢(Z). This distribution is called the encoder. Then, the
reconstruction is made possible with a second conditional probability over the codes, i.e. p(X|z),
that is called the decoder. If z is the current code, the reconstructed data is & ~ p(X|z).

In short, the efficacy of a code is estimated by an information-theoretic quantity, the “reconstruc-
tion cost” that is defined for every & knowing p and ¢:

F(x) = E.q [-log(p(z]2))] + KL(¢(2)[[p(2)) (40)
= —logp(x) + KL(¢(Z)||p(Z|x)) (41)

with p(Z) the prior over the latent state. F' is also said the Variational Free Energy (VFE), for it
shares shares a mathematic analogy with the Helmhotz Free Energy (Friston, 2010)). Minimizing the

cost F' according to p and ¢ thus means minimizing the “surprise” caused by observing the data @
(Friston), 2010)).

Viewpoint-dependent VFE If we now turn back to the viewpoint selection setup, an additional
factor w (the viewpoint) comes into the play. The data x that is actually read is now conditioned
on u, so that:

F(alu) = ..y [~ log(p(elz, u))] + KL(g(2)|[p(2)) (42)
= —log p(|u) + KL(g(2)||p(Z]z, u)) (43)

When only the variations of p and ¢ are considered in the optimization, each viewpoint w provides
a distinct optimization problem that is resolved by finding ¢(Z) ~ p(Z|x,u). Each w may thus drive
a different posterior and thus a different reconstruction cost. It is thus feasible to change (and
optimize) the reconstruction cost through changing w.

Sequential viewpoint-dependent VFE When generalized to many observations: (&, u), (', u'),

., (2, u™), the n' reconstruction cost F™ (x™|u™ ... x, u) also obeys to the chain rule (see
eq. @, i.e. is estimated from ¢, u™ and ™ only:

Flau®; ¢ ) = E,.., [~ log p(z]z, u)] + KL(g(2)l¢"(2)) (44)

= —log p(@™|u™) + KL(g(2)||p(Z|z"™, ul™; ¢")) (45)

with ¢"~1 having the role of the prior, providing a forward variational encoding scheme (see also
(Chung et al., 2015; [Fraccaro et al., 2016).



