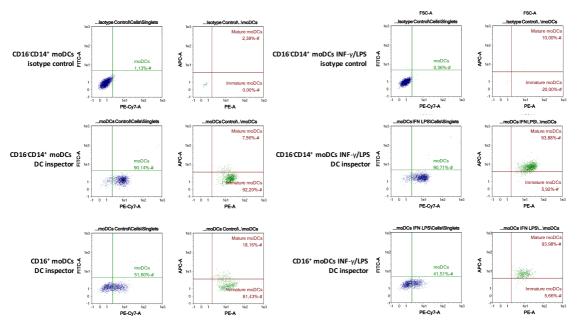

Supplementary Data 1


Analysis of *IL22RA2* and cytokine gene expression by qPCR and surface expression markers by flow cytometry in CD16⁻/CD14⁺ or CD16⁺ monocytes and their corresponding derived immature and mature dendritic cells.

We tested whether *IL22RA2* expression patterns were different in distinct monocyte subpopulations stratified according to $CD14^+$ and $CD16^+$ expression. The approach was based on an initial granulocyte and NK cell depletion, followed by $CD16^+$ selection (Miltenyi, 130-091-765) of both non-classical and intermediate monocytes, while the CD16-negative fraction was subjected to a further CD14-positive selection (Miltenyi, 130-050-201) consisting of classical monocytes. Flow cytometry graphs and scheme of this strategy are presented below (**Figure 1**).

Figure 1: CD16⁻/CD14⁺ and CD16⁺ monocyte purification analysed by flow cytometry.

In order to generate immature and mature moDCs, we cultured the purified monocytes in Mo-DC medium and matured them by treatment with IFN- γ and then with LPS for 24h or left untreated (immature) as described in **Materials and Methods** section. Assessment of expression of surface maturation markers before and after maturation was done by flow cytometry and is summarized in the following **Figure 2**.

CD14 (FITC), CD83 (APC) and CD209 (PE) expression in immature and mature D16^{-/}CD14⁺ or CD16⁺ moDCs

Figure 2: Flow cytometric analysis of in vitro generated monocyte-derived dendritic cells (moDCs) using the Mo-DC Differentiation Inspector. Surface markers (CD14, CD83 and CD209) expression of CD16/CD14⁺ or CD16+ moDCs were analysed. CD14=FITC; CD83=APC and CD209=PE.

We analysed expression of cytokine genes at day 0 (freshly isolated monocytes) and at day 7 (immature and matured moDCs) (**Figure 3**). Primers and probes are indicated at the end of this supplement.

IL22RA2 levels were higher in CD16⁺ compared to CD14⁺ monocytes, while *IL10* and *IL6* followed opposite trends (**Figure 3**, left). However, expression of *IL22RA2*

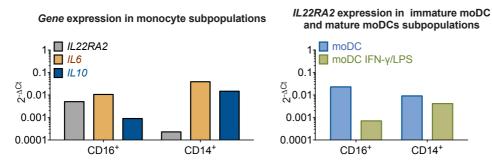


Figure 3: IL22RA2 and cytokine gene expression in $CD16/CD14^+$ or $CD16^+$ monocytes and in their corresponding immature and mature monocyte derived dendritic cells (moDCs) subpopulations.

increased to similar levels upon cultivation of $CD16^+$ or $CD14^+$ monocytes in Mo-DC medium (**Figure 3**, right). Maturation decreased *IL22RA2* expression in both subpopulations; nevertheless, the decrease was marked more strongly in $CD16^+$ -monocyte derived, compared to $CD14^+$ -monocyte derived DCs (**Figure 3**, right).

We further analyzed more extensive cytokine expression signatures in addition to IL22RA2 in the corresponding moDCs. In both CD16⁺ monocyte-derived and CD14⁺ monocyte-derived immature DCs, we observed similar expression levels under non-stimulated conditions for IL23A, IL18, IFNB, IL12B, IL10 and IL20. However, IL22RA2 levels were modestly higher (2,5-fold increase) in CD16⁺ moDCs, while IL19 levels were much higher (17-fold increase) in CD14⁺ moDCs.

When comparing IFN- γ /LPS-stimulated mature moDCs with immature moDCs (**Table 1**), a strong induction of *IL12B* (about 120 fold increase) as well as smaller ones of *IL18* (about 8-fold increase) and *IL20* (about 2-fold increase) were observed in both CD14⁺ and CD16⁺ derived populations. *TGF* β was down-regulated (about 3-fold decrease) to similar extent in both populations. However, *IL22RA2* showed a 3-fold decrease in CD16⁻CD14⁺ moDCs and a 32-fold decrease in CD16⁺ moDCs. Various other cytokines were differentially upregulated during culture with the maturation stimuli IFN- γ /LPS. In CD16⁻CD14⁺ moDCs compared to CD16⁺ moDCs, *IFNB* (28-fold increase vs. no difference) and *IL23A* (17-fold increase vs. 5) showed higher levels of upregulation, while *IL19* (2-fold change vs. 91) and *IL10* (7-fold change vs. 41) were less strongly upregulated.

	CD14 ⁺ -monocyte derived DCs treated on D7 with IFN-y / LPS	CD16 ⁺ -monocyte derived DCs treated on D7 with IFN-γ / LPS	
IL12B	124	114	
IL19	2	91	Highly increased (>10)
IL10	7	41	Moderately increased (<10)
IFNB	28	1,24	Moderately decreased (<10)
IL23A	17	5	Highly decreased (>10)
IL18	7	9	
IL20	2	1,5	
IL22RA2	2	32	
TGFB	3	4	

Table 1: Cytokine gene expression fold-change of mature moDCs relative to immature moDCs.

Based on these findings, our research continued in identifying the $CD16^+$ monocyte subpopulation (intermediate, non-classical or both) that expressed higher levels of *IL22RA2*, described in the main article text, but we did not further focus on the effects of maturation nor on the other cytokine genes in these 3 populations.

As shown in **Figure 8** in the main article text, we noted that although *IL22RA2* levels are monocyte-subpopulation specific, following *in vitro* culture in Mo-DC differentiation medium, these differences disappear, and therefore, $CD14^+$ moDCs are a suitable model for the study of *IL22RA2*.

Gene	Assay ID	Туре	Dye	Catalog #	Company
IFNB	Hs01077958_s	Probe	FAM	4331182	Thermo Fisher
IL12B	Hs01011519_m1	Probe	FAM	4331182	Thermo Fisher
IL23A	Hs00900828_g1	Probe	FAM	4331182	Thermo Fisher
IL6	Hs00174131_m1	Probe	FAM	4331182	Thermo Fisher
IL19	Hs00604657_m1	Probe	FAM	4331182	Thermo Fisher
IL10	Hs00961622_m1	Probe	FAM	4331182	Thermo Fisher
IL20	Hs00218888_m1	Probe	FAM	4331182	Thermo Fisher
IL22RA2	Hs00364814_m1	Probe	FAM	4331182	Thermo Fisher
ACTB	Hs99999903_m1	Probe	VIC	4448489	Thermo Fisher
IL18	Hs.PT.58.25675872	Primers	-	-	IDT
TGFB	Hs. PT.58.22563137	Primers	-	-	IDT
IL22RA2	Hs.PT.58.40811	Primers			IDT
ACTB	Hs. PT.39a.22214847	Primers			IDT

Primers and probes used in Supplementary Data 1.