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APPENDIX: DERIVATION OF EQUATIONS OF
MOTIONS FOR CLOSED, TWO DIMENSIONAL

SURFACES

Now we turn to the derivation of (23-25) without using
any information from (20-22) (though derivation of (23-
25) from (20-22) is strightforwad and trivial if one sets
V 0 = 0 in (20-22 equations [1]). To deduce the equations
of motion we derive the simplest one from the set (23)
first. It is direct consequence of generalization of conser-
vation of mass law. Following boundary conditions must
be satisfied: 1) at the end of variations dm/dt = 0, where
m =

∫
S
ρdS and 2) a pass integral along any curve γ on

the closed surface must vanish v = niV
i = 0, where ni

is a normal of the curve and lays in the tangent space.
Considering these two boundary conditions, Gauss theo-
rem, conservation of mass and integration formula (18),
we find:

0 =

∫
γ

vρdγ =

∫
γ

niV
iρdγ =

∫
S

∇i(ρV i)dS

=

∫
S

(∇i(ρV i)− ρCBii + ρCBii)dS

=

∫
S

(∇i(ρV i)− ρCBii)dS +

∫
S

∇̇ρdS − d

dt

∫
S

ρdS

=

∫
S

(∇̇ρ+∇i(ρV i)− ρCBii)dS (1)

Since (1) must hold for any integrand the first equation
from the set (23) immediately follows. To deduce second
and third equations, we take a Lagrangian

L =

∫
S

ρV 2

2
dS +

∫
Ω

(P+ + Π)dΩ (2)

and set minimum action principle requesting that
δL/δt = 0. Evaluation of space integral is simple and
straightforward, using integration theorem for space in-
tegral where the convective and advective terms due to
the volume motion is properly taken into account (17),
we find

δ

δt

∫
Ω

(P++Π)dΩ =

∫
Ω

∂α(P++Π)V αdΩ+

∫
S

C(P++Π)dS

(3)
Derivation for kinetic part is a bit tricky and challenging
that is why we do it last. Straightforward, brute math-
ematical manipulations, using first equation from (23),
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lead

δ

δt

∫
S

ρV 2

2
dS =

∫
S

(∇̇ρV
2

2
− CBii

ρV 2

2
)dS

=

∫
S

(∇̇ρV
2

2
+ ρ∇̇V

2

2
− CBii

ρV 2

2
)dS

=

∫
S

((ρCBii −∇i(ρV i))
V 2

2
+ ρ∇̇V

2

2
− CBii

ρV 2

2
)dS

=

∫
S

(−∇i(ρV i)
V 2

2
+ ρ∇̇V

2

2
)dS

=

∫
S

(−∇i(ρV i
V 2

2
) + ρV i∇i

V 2

2
+ ρ∇̇V

2

2
)dS

=

∫
S

(−∇i(ρV i
V 2

2
) + ρ~V (V i∇i~V + ∇̇~V ))dS (4)

At the end of variations when the surface reaches sta-
tionary shape according to Gauss theorem (as we used it
already in (1)), we find

∫
S

−∇i(ρV i
V 2

2
)dS = −

∫
γ

ρV ini
V 2

2
dγ = 0 (5)

γ is stationary contour of the surface and ni is the normal
to the contour, therefore interface velocity for contour
v = niV

i = 0 and the integral (5) vanishes, correspond-
ingly

δ

δt

∫
S

ρV 2

2
dS =

∫
S

ρ~V (V i∇i~V + ∇̇~V )dS (6)

To decompose the dot product of the integrand by the
normal and the tangential components and, therefore,
deduce final equations, we do following algebraic manip-
ulations

∇̇~V + V i∇i~V

= ∇̇~V + V i∇i~V + CV iBji
~Sj − CV iBji ~Sj

= ∇̇~V + V i∇i~V + CV iBjiX
α
j
~Xα − CV iBji ~Sj (7)

Now using Weingartens formula Xα
j B

j
i = −∇iNα,

metrinilic property of the Euclidian bases ∇i ~Xα = 0,

the definition of the surface normal ~N = Nα ~Xα and tak-
ing into account that ~V = C ~N+V i~Si and its derivatives,
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we find

∇̇~V + V i∇i~V + CV iBjiX
α
j
~Xα − CV iBji ~Sj

= ∇̇~V + V i∇i~V − CV i ~Xα∇iNα − CV iBji ~Sj
= ∇̇~V + V i∇i~V − CV i∇i(Nα ~Xα)− CV iBji ~Sj
= ∇̇~V + V i∇i~V − CV i∇i ~N − CV iBji ~Sj
= ∇̇~V + V i∇i(C ~N) + V i∇i(V j ~Sj)− CV i∇i ~N

− CV iBji ~Sj
= ∇̇~V + V i ~N∇iC + V i∇i(V j ~Sj)− CV iBji ~Sj
= ∇̇(C ~N) + ∇̇(V j ~Sj) + V i ~N∇iC + V i∇i(V j ~Sj)

− CV iBji ~Sj (8)

Continuing algebraic manipulations using Thomas for-

mula ∇̇ ~N = −∇iC~Si, the formula for surface derivative

of interface velocity ~N∇iC = ∇̇~Si and the definition of

curvature tensor (5) yield

∇̇(C ~N) + ∇̇(V j ~Sj) + V i ~N∇iC + V i∇i(V j ~Sj)

− CV iBji ~Sj
= ∇̇(C ~N) + C∇jC~Sj + 2V i ~N∇iC + V iV jBij ~N

+ ∇̇(V j ~Sj)

− V i ~N∇iC + V i∇i(V j ~Sj)− V iV jBij ~N − C∇jC~Sj
− CV iBji ~Sj
= ∇̇(C ~N)− C∇̇ ~N + 2V i ~N∇iC + V iV jBij ~N

+ ∇̇(V j ~Sj)− V j∇̇~Sj
+ V i∇i(V j ~Sj)− V iV j∇i~Sj − C∇jC~Sj − CV iBji ~Sj
= (∇̇C + 2V i∇iC + V iV jBij) ~N

+ (∇̇V j + V i∇iV j − C∇jC − CV iBji )~Sj (9)

Dotting (9) on ~V and taking into account (6) the last
derivation finally reveals variation of the kinetic energy,
so that we finally find

δ

δt

∫
S

ρV 2

2
dS =

∫
S

(ρC(∇̇C + 2V i∇iC + V iV jBij) + ρVi(∇̇V i + V j∇jV i − C∇iC − CV jBij))dS (10)

Combining (1-3) and (10) together and taking into ac-
count that the pressure acts on the surface along the

surface normal, we immediately find first (23) and the
last equation (25) of the set. To clarify second equation
(24), we have

∫
S

ρC(∇̇C + 2V i∇iC + V iV jBij)dS =

∫
Ω

−∂α(P+ + Π)V αdΩ−
∫
S

C(P+ + Π)dS∫
S

C(ρ(∇̇C + 2V i∇iC + V iV jBij) + P+ + Π)dS =

∫
Ω

−∂α(P+ + Π)V αdΩ (11)

After applying Gauss theorem to the second equation (11), the surface integral is converted to space integral so
that we finally find

∂α(ρV α(∇̇C + 2V i∇iC + V iV jBij) + (P+ + Π)V α) = −∂α(P+ + Π)V α (12)

and, therefore, all three equations (23-25) are rigorously clarified.
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