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APPENDIX I: BAYESIAN FULL CONDITIONAL DISTRIBUTION

Bayesian Full Conditional Distribution

Under the Bayesian modeling framework described in section 3.2, the full likelihood of the
learners’ responses and response times, as well as their speed, learning ability, and attribute patterns
and learning modes at each time point conditioning on the fixed model parameters is given by

P (X,L,α,θ, τ ,D | λ, s,g, g∗, a,γ, φ, µ1, σ21, ω,π, σ2τ )

=
N∏
i=1

{
p(τi | σ2τ )p(αi,t | π)×

T−1∏
t=1

[
P (Di,t | ω)P (Xi,t,Li,t | Di,t, ·)P (αi,t+1 | Di,t,αi,t, ·)

]
×

P (Di,T | ω)P (Xi,T ,Li,T | Di,T , ·)

}
, (1)

where

P (Xi,t,Li,t | Di,t, ·)

=


∏Jt
j=1 g

∗Xi,j,t(1− g∗)1−Xi,j,tf(Li,j,t | µ1, σ21), if Di,t = 1∏Jt
j=1(1− sj)

∏K
k=1 α

qj,k
i,t,kg

1−
∏K

k=1 α
qj,k
i,t,k

j f(Li,j,t | γj , τi, φ,αi,t, aj), if Di,t = 0,
(2)

and

P (αi,t+1 | Di,t,αi,t, ·) =

{
I(αi,t+1 = αi,t), if Di,t = 1,∏K
k=1 P (αi,t+1,k | αi,t,λ, θi), if Di,t = 0.

(3)
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We next present the conditional distribution of each model parameter given the other parameters
and the observed responses and response times, which can be used to obtain random samples from
the posterior distribution with a MH within Gibbs sampling algorithm.

At each time point t and for each subject i, the conditional distribution of Di,t is

P (Di,t = 1 | ω,Xi,t,Li,t,αi) =
π̃i,t,1∑1
d=0 π̃i,t,d

, (4)

where π̃i,t,d is given by

π̃i,t,d =

{
P (Di,t = d | ω)P (αi,t+1 | Di,t = d, ·)P (Xi,t,Li,t | Di,t = d, ·), if t < T,

P (Di,t = d | ω)P (Xi,t,Li,t | Di,t = d, ·), if t = T,
(5)

where P (αi,t+1 | Di,t = d, ·) and P (Xi,t,Li,t | Di,t = d, ·) could be obtained from Equations
(2) and (3).

The conditional distribution of the mixture weight, ω, is

ω |D ∼ Beta(1 +
N∑
i=1

T∑
t=1

Di,t, 1 +
N∑
i=1

T∑
t=1

(1−Di,t)). (6)

For each subject i and each time point t, the conditional probability that the current attribute
pattern αi,t equals αc ∈ {0, 1}K is

P (αi,t = αc) =
π̃ict∑2K

c′=1 π̃ic′t
, (7)

where π̃ict is given by

π̃ict =


πcP (αi,t+1 | αi,t, Di,t)P (Xi,t | αi,t, Di,t)f(Li,t | αi,t, Di,t), if t = 1,
P (αi,t | αi,t−1, Di,t−1)P (αi,t+1 | αi,t, Di,t)P (Xi,t |
αi,t, Di,t)
× f(Li,t | αi,t, Di,t),

if 1 < t < T,

P (αi,t | αi,t−1, Di,t−1)P (Xi,t | αi,t, Di,t)f(Li,t | αi,t, Di,t), if t = T.

(8)

For the population proportions of the attribute patterns at time 1, π, the conditional distribution is

π | α1,1 . . . ,αN,1 ∼ Dirichlet(1 + Ñ), (9)

where Ñ = [
∑N

i=1 I(αi,1 = α1), . . . ,
∑N

i=1 I(αi,1 = α2K )].
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For any learner i, the conditional distribution of θi is

P (θi | αi,λ) ∝ p(θi)
[ ∏
t<T :
Di,t=0

P (αi,t+1 | αi,t, θi,λ)
]
, (10)

and the conditional distribution of τi is N(µτi , σ
2
τi), where

µτi = −

∑T
t=1

{
(1−Di,t)

{∑Jt
j=1 a

2
j [log(Li,j,t − γj + φ ∗Gi,j,t)]

}}
∑T

t=1

[
(1−Di,t)

∑Jt
j=1 a

2
j

]
+ 1/σ2τ

, and

σ2τi =
1∑T

t=1

[
(1−Di,t)

∑Jt
j=1 a

2
j

]
+ 1/σ2τ

. (11)

And the conditional distribution of the variance of initial latent speed, σ2τ , is

σ2τ | τ ∼ Inv-Gamma(2.5 +
N

2
, 1 +

∑N
i=1 τ

2
i

2
). (12)

For the slopes and intercept of the HO-HM DCM, λ, the conditional distribution is proportional to

p(λ)
N∏
i=1

∏
t<T−1:
Di,t=0

P (αi,t+1 | αi,t,λ, θi). (13)

The conditional distribution of the DINA model sj , gj for each item j is given by

P (sj , gj |Xj ,α,D) ∝ sãs−1j (1− sj)b̃s−1g
ãg−1
j (1− gj)b̃g−1I(gj < 1− sj), (14)

with

ãs = 1 +
∑

i:Di,t=0
&Xi,j=0

ηi,j,t, b̃s = 1 +
∑

i:Di,t=0
&Xi,j=1

ηi,j,t,

ãg = 1 +
∑

i:Di,t=0
&Xi,j=1

(1− ηi,j,t), b̃g = 1 +
∑

i:Di,t=0
&Xi,j=0

(1− ηi,j,t),

where ηi,j,t denotes the ideal response under the DINA model.

The conditional distribution of correct response probability for learners in the disengaged mode,
g∗, is

g∗ |X,D ∼ Beta(ãg∗ , b̃g∗), (15)

Frontiers 3



Zhang et al. A Mixture Learning Model

where

ag∗ = 1 +
∑

i,t:Di,t=1

Jt∑
j=1

Xi,j,t, bg∗ = 1 +
∑

i,t:Di,t=1

Jt∑
j=1

(1−Xi,j,t).

For each item j, the conditional distribution of the time discrimination parameter a2j is

a2j ∼ Gamma
(
1 +

∑N
i=1(1−Di,tij )

2
, 1 +

∑N
i=1(1−Di,tij )(logLi,j,tij + τi + φGi,j,tij − γj)2

2

)
,

(16)
where tij denotes the time at which item j is given to subject i. And the conditional distribution of
the time intensity parameter, γj , is

γj | Lj ,D, aj , φ, τ ∼ N(µ̃γ , σ̃
2
γ), with (17)

σ̃2γ = 1/
(
1 + a2j

N∑
i=1

(1−Di,tij )
)
,

µ̃γ = σ̃2γ ∗
{
a2j

N∑
i=1

(1−Di,tij )(logLi,j,tij + τi + φGi,j,tij )
}
.

For φ, the slope for the covariate describing speed increase over time in the engaged learning
mode, the conditional distribution is

φ | L,α, τ , a,γ,D ∼ N(µ̃φ, σ̃
2
φ), with (18)

σ̃2φ = 1/
(
1 +

N∑
i=1

T∑
t=1

(1−Di,tij )

Jt∑
j=1

a2jG
2
i,j,tij

)
,

µ̃φ = σ̃2φ ∗
{ N∑
i=1

T∑
t=1

(1−Di,tij )

Jt∑
j=1

[
a2j(γj − τi − logLi,j,tij )Gi,j,tij

]}
.

Lastly, the conditional distributions of the mean and standard deviation of log-response times
under the disengaged learning mode are as the following:

µ1 | L,D, σ21 ∼ N(µ̃µ1 , σ̃
2
µ1), with (19)
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σ̃2µ1 = 1/
(
1 +

1

σ21
Jt

N∑
i=1

T∑
t=1

Di,t

)
,

µ̃µ1 = σ̃2µ1 ∗
{ 1

σ21

N∑
i=1

T∑
t=1

Di,t

Jt∑
j=1

logLi,j,t

}. And

σ21 | L,D, µ1 ∼ Inv-Gamma
(
1+

Jt ·
∑N

i=1

∑T
t=1Di,t

2
, 1+

∑N
i=1

∑T
t=1

[
Di,t

∑Jt
j=1(logLi,j,t − µ1)2

]
2

)
.

(20)
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APPENDIX II: MARKOV CHAIN MONTE CARLO ALGORITHM FOR
PARAMETER SAMPLING

Algorithm 1 MCMC algorithm for mixture learning model parameter sampling.
Inputs:

1: Observed responses,X;
2: Response times, L;
3: Q-matrices, Q;
4: Standard deviation of proposal distribution of θ, σ∗θ
5: band-widths of proposal distribution for λ, δ∗;
6: chain length, R.

Initialization:
1: Sample transition model parameters, λ[0]0 ∼ N(0, 1), and λ[0]1 , λ

[0]
2 ∼ U(0, 1);

2: Sample variance of initial speed, σ2[0]τ ∼ U(1, 1.5);
3: For each learner i, sample θ[0]i ∼ N(0, 1), τ [0]i ∼ N(0, σ

2[0]
τ );

4: Sample π[0] ∼ Dirichlet(1, . . . , 1);
5: For each learner i, sample α[0]

i,1 ∼ Multinomial(π[0]);
6: Sample the disengagement probability, ω[0] ∼ U(0, .2);
7: For i = 1, . . . , N, t = 1, . . . , T , set D[0]

i,t = 0;

8: For t = 2, . . . , T, i = 1, . . . , N , simulate α[0]
i,t based on D[0]

i,t−1,α
[0]
i,t−1, θ

[0]
i , and λ[0];

9: For each item j, sample DINA parameters s[0]j , g
[0]
j ∼ U(0, .3), and the RT parameters a[0]j ∼

U(2, 4), γ
[0]
j ∼ N(3.45, .52);

10: Sample φ[0] ∼ U(0, 1);
11: Sample the correct response probability under the disengaged mode, g∗[0] ∼ U(0, .5);
12: Sample mean and variance for log-response time under the disengaged mode, µ[0]1 ∼ N(2, 1),

σ
2[0]
1 ∼ U(0, 1);

For r = 1, . . . , R− 1, do:
1: For i = 1, . . . , N, t = 1, . . . , T , sample D

[r+1]
i,t based on Equation (5), given

α
[r]
i,t ,α

[r]
i,t+1, θ

[r]
i ,λ

[r],X
[r]
i,t , and L[r]

i,t;

2: For each i, starting from t = 1, based on D[r]
i , determine the last time point t∗ until which

αi,t∗ remains unchanged from αi,t according to the model assumption on the transition
probability in the disengaged mode, sample α[r+1]

i,t ,α
[r+1]
i,t+1 , . . . ,α

[r+1]
i,t∗ together based on

α
[r+1]
i,t−1 ,α

[r]
i,t∗+1, θ

[r]
i ,λ

[r],Xi,t∗ , and Li,t∗ , according to Equation (7);

3: For i = 1, . . . , N, update θi with a Metropolis-Hastings step. Sample θ[r+1]
i ∼ N(θ

[r]
i , σ

∗
θ),

accept with probability min

{
1,

P (θ
[r+1]
i |α[r+1]

i ,λ[r]
)

P (θ
[r]
i |α

[r]
i ,λ[r]

)

}
, with P (θi | αi,λ) in Equation (10);

4: For i = 1, . . . , N , update τ [r+1]
i based on Equations (11) given a[r],γ[r],D

[r+1]
i , σ

2[r]
τ ,α

[r+1]
i ,

and Li;
5: Based on the conditional distribution of σ2τ in Equation (12) and τ [r+1], obtain σ2[r+1]

τ ;
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6: Based on α[r+1], update π[r+1] according to Equation (9);
7: Sample ω[r+1] from the Beta distribution given in Equation (6), based onD[r+1];
8: Update λ with a Metropolis-Hastings step: For h = 0, 1, 2, sample λ[r+1]

h ∼ Uniform(λ
[r]
h , δ

∗
h).

Accept with probability P (λ∗|α[r+1],θ[r+1]
)

P (λ[r]|α[r+1],θ[r+1]
)
, where λ∗h′ = λ[r+1] on entries 0, . . . , h − 1,

λh′h = λ
[r+1]
h , and λh′ = λ[r] on entries h+1, . . . , 3. P (λ | α[r+1],θ[r+1]) is given in Equation

(13);
9: For j = 1, . . . , Jt × T , sample s[r+1]

j from the truncated beta distribution based on Equations

(14) and α[r+1],D[r+1],X, and g[r]j ; sample g[r+1]
j based on α[r+1],D[r+1],X, and s[r+1]

j ;

10: For j = 1, . . . , Jt × T , sample a[r+1]
j based on Equation (16) and L, τ [r+1],α[r+1],D[r+1]φ[r]

and γ
[r]
j ; sample γ

[r+1]
j from the normal distribution in (17), based on

L, τ [r+1],α[r+1],D[r+1], φ[r] and a[r+1]
j ;

11: Sample µ[r+1]
1 from the conditional distribution given in Equation (19), based on L,D[r+1],

and σ2[r]1 ;
12: Sample σ2[r+1]

1 based on Equation (20), given L,D[r+1] and µ[r+1]
1 ;

13: Sample φ[r+1] from the normal distribution in Equation (18), given D[r+1], a[r+1],γ[r+1],
τ [r+1],α[r+1], and L;

Output: Samples for each model parameter from iteration 1 to R.
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