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I. E-GLIF model solution and parameter space
Considering the matrix form of the ODE system describing the model dynamics (Equ. 1):
           (A 1)
the general solution is:
                      (A 2)

where:
, ,  are arbitrary constants depending on the initial conditions
 are the eigenvalues of the coefficient matrix, with values:
	 = , (∈ R-) 									   (A 3)
	 =  				   (A 4)
	 =  				   (A 5)
, ,  are the eigenvectors associated to each eigenvalue 
, ,  are the stationary solutions for each state variable.

For the membrane potential, the solution is (Hertäg et al., 2012):
			(A 6)


Specifically:	
							    (A 7)

, 								   (A 8)
the first component of the eigenvector associated to the eigenvalue .

, 										   (A 9)
the first component of the eigenvectors associated to the eigenvalues  and , respectively

Considering that k1 is real and positive, the dynamics of the solution depends on the discriminant:
 							 (A 10)

Case 1: exponential and stable solution; the following conditions need to be verified:
·  ⇒  ∈ R  (the solution is exponential)
·  < 0  (the solution is stable)
In addition, we need to verify that Vm_inf  ∝ Ie+Istim, i.e. Vm_inf is proportional to the total input current through a positive coefficient, to have a coherent value of steady state membrane potential.
These conditions result in the following constraints on parameters:
⇒  					(A 11)


Case 2:  oscillatory solution; the following conditions need to be verified:
·  ⇒  ∈ C  (the solution is oscillatory);
· If Re[] = 0  ⇒ the oscillations have null damping; 
· If Re[] < 0  ⇒ the oscillations are damped and the solution is stable.
Analogously to the previous case, we need to verify that Vm_inf ∝ Ie+Istim through a positive coefficient.
The resulting constraints among parameters are:
⇒  		  (A 12)
In this case, oscillations depend on the imaginary part of the eigenvalues () and thus have angular frequency  and related frequency .
The analytical solution was exploited in the E-GLIF optimization process to define the cost function and the parameter constraints.
During PyNEST simulations, the neuron model response over a membrane potential threshold was approximated to a spike. For neurophysiological realism, a spike was generated at time tspk depending on the escape rate function  (Equ. 2) accounting for stochasticity and the refractory interval, if: 							            (A 13)


where rnd = random number in the interval [0, 1]

II. E-GLIF optimization for cerebellar Golgi cells: parameter constraints
In order to obtain the expected neurophysiological behavior when simulating cerebellar GoCs, E-GLIF optimization took into account multiple parameter constraints. Specifically:
Nonlinear constraints:
Negative discriminant ( to obtain an oscillatory membrane potential (as described in Appendix, I):
							              (A 14)

Controlled Vm oscillation frequency: 3 < fOSC < 8 Hz, where fOSC is defined in Section 2.1.
Controlled amplitude of oscillations (), during the intervals , ,  of the zero-current phase (Istim = 0 pA) and during the hyperpolarizing interval hyp (with Istim = inh):
 			              (A 15)

 							                (A 16)
 to constraint the occurrence of the first spike event during the zero-current phase, so to trigger all the spike-reset-update mechanisms.

Linear constraints:
GoC show faster dynamics of the sodium ion current with respect to potassium one (accounted for by the current updates A1 and A2):
 pA							                            (A 17)

Parameter bounds:
	Not-damped Vm oscillations (see Appendix, I):
	
 									 (A 18)
	
After , negligible contribution of the depolarizing current Idep, during the zero-current phase (Istim = 0), to avoid interference with the neuron spontaneous activity, being Idep the depolarizing spike-triggered current, with decay k1:
 							 (A 19)

Realistic values of Idep and Iadap based on the neurophysiological values of sodium and potassium ion currents (Solinas et al., 2007a):
,  < 500 pA 									 (A 20)

Limited values of the endogenous current:
 < 50 pA 									 (A 21)

