Table 1. Characteristics of the five main lake monitoring strategies (Routine sampling, automated high-frequency sampling, remote sensing, disparate data and snapshot sampling) addressing the scale that they can cover (temporal vs. spatial); the investment in time, money, personnel and equipment; the potential outcome with regards data integration, accuracy, efficiency collaboration and data sharing; and potential caveats.

		Rank	Routine Sampling	Automated High Frequency	Remote Sensing	Disparate Data	Snapshot Sampling
Scale	\bigcirc	Temporal scale	*	4	*	*	*
		Spatial scale	*	*	4	4	4
Investment	Ē	Time	Long-term effort	Long-term effort	Long-term effort	Long-term effort	Short-term effort
	\$	Money	Relatively expensive	Cheap to expensive	Relatively cheap	Expensive	Relatively cheap
	††	Personnel	Team effort	Individual-team effort	Team effort	Team effort	Individual-team effort
	Ó	Equipment	Low - High tech Long-term usage	Low - High tech Long-term usage	High tech Long-term usage	High tech Long-term usage	Low tech Short-term usage
Outcome		Data Integration	含含含 合合	青黄黄合合	***	★★☆☆☆	***
	ø	Accuracy	★★☆☆☆	黄黄黄黄白	黄素素素合	食食食 合合	含含含含 合
	S	Efficiency	青青合合合	黄黄黄黄白	青青青合合	含含含 合合	****
		International Collaboration	Not necessary	Not necessary	Necessary	Necessary	Mostly necessary
		Data Sharing	Rarely open access	Increasingly open access	Mostly open access	Mostly open access	Mostly open access
		Caveats	Human error, seasonality	Lack of funding, instrument failure	Weather conditions	Incomplete data integration	Large spatial coverage required

Legend

Temporal and Spatial scale – green check marks indicate strategies that we deem to be particularly strong in this respect while orange check marks indicate strategies with a potential to cover temporal or spatial scales. **Time** – the amount of time required to obtain a comprehensive dataset, based on the research question. Snapshot sampling is attractive based upon this criterion, yielding information at shorter time-scales than most other methods.

Money – the funds that the end-users need to invest to build or have access to the dataset. Remote sensing for instance is expensive to get up and running, but for end-users in academia the images are often available at no to low cost.

Personnel – the amount of (trained) employees needed to acquire data and maintain meaningful datasets. Is it typically a team effort or could individuals or small groups manage by themselves?

Equipment – the type of equipment needed to acquire data in a consistent manner, being technologically advanced or not, and remaining functional for longer or shorter periods.

Data Integration – how easily can datasets from different sampling efforts be combined into an integrated dataset?

Accuracy – It is hard to award distinctions for this criterion, different methods are appropriate for different types of questions

Efficiency – "Bang for the buck". The amount of scientifically valuable data obtained per unit (monetary) investment.

International Collaboration – Is international collaboration essential to create a usable dataset?

Data Sharing – Feasibility to publish datasets in an open, publicly accessible format

Caveats – potential caveats linked to e.g. research purposes not being clear, funds not being permanently available or confounding effects of seasonality for the detection of long-term trends etc.