

[Appendix] BioLQM: a java toolkit for the manipulation and conversion of Logical Qualitative Models of biological networks

Aurélien Naldi^{1,*}

¹Computational Systems Biology Team, Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, PSL Université Paris, France,

Correspondence*: Aurélien Naldi aurelien.naldi@ens.fr

This document contains some formal definitions of the methods implemented in the bioLQM software. It completes the technology report published in *frontiers in Physiology*, which provides a general introduction to the formalism and software.

The main document is available with DOI: 10.3389/fphys.2018.01605.

The bioLQM software is available at http://www.colomoto.org/biolqm.

1 LOGICAL QUALITATIVE MODEL

A Logical Qualitative Model $\mathcal{L} = (\mathcal{G}, \mathcal{M}, \mathcal{F})$ with *n* components is defined by:

- $\mathcal{G} = \{g_i\}_{i=1...n}$, the set of its components.
- *M* = {*m_i* ∈ ℕ*}_{*i*=1...*n*}, the maximal activity levels of these components,
 S_i = [0, *m_i*] is the activity range of the component *g_i*, and *S* = ∏ *S_i* is the state space.
- $\mathcal{F} = \{f_i : S \to S_i\}_{i=1...n}$, the logical functions defining its dynamical behavior.

A Boolean model $(\mathcal{G}, \mathcal{F})$ is a logical qualitative model such that all $m_i = 1 \ \forall i \in [1, n]$ (*i.e.* $\mathcal{S} = [0, 1]^n$).

2 STATE SPACE AND DYNAMICS

In the following, we define the state and dynamics of a model, which can be computed from its logical functions f_i . For simplicity, we use *i* as a shorthand for g_i when no ambiguity is possible.

A (qualitative) state $x \in S$ of the model is a vector giving the activity levels of all components, where x_i denotes the activity of the component $i: x = (x_i \in S_i)_{i=1...n}$. A component i is **called to update** in the state x if $f_i(x) \neq x_i$. The state x is a **stable state** (also called fixed point, or steady state) if no component is called to update, *i.e.* if $x_i = f_i(x) \forall i \in 1...n$.

We define unitary update functions $u_i : S \to S_i$ such that $u_i(x) = x_i + \Delta_i(x)$, where

$$\Delta_i(x) = \begin{cases} 0 & \text{if } f_i(x) = x_i \\ 1 & \text{if } f_i(x) > x_i \\ -1 & \text{if } f_i(x) < x_i \end{cases}$$

In the Boolean case, these unitary functions are identical to the logical functions f_i by construction. They enforce unitary transitions in the multi-valued case.

We call $f(x) = (f_i(x))_{i=1...n}$ the image of the state x, and $u(x) = (u_i(x))_{i=1...n}$ its unitary image.

Given a state $x \in S$ and a subset of the components $p \subset G$, let \overline{x}^p be the state where all the components of the subset have been updated at once:

$$\overline{x}_i^p = \begin{cases} u_i(x) & \text{if } i \in p \\ x_i & \text{otherwise} \end{cases}$$

For simplicity, \overline{x}^i denotes $\overline{x}^{\{i\}}$.

Deterministic updatings

- In the synchronous updating, the unique successor of x is its unitary image u(x).
- In the **sequential** updating following the default order of components, the unique successor of the state x is $(u_n \circ \cdots \circ u_1)(x)$. A different sequential updater can be defined for each possible ordering of \mathcal{G} .
- A block-sequential updater is based on an ordered partition of G in m non-overlapping subsets (m ≤ n). Let P = (p₁,..., p_m | p_k ⊂ G ∀k) be this ordered partition. The function v_k : S → S such that v_k(x) = x̄^{p_k} updates all components of the subset p_k synchronously. The unique successor of the state x by the block-sequential updater defined by the ordered partition P is then given by combining these functions: (v_m ∘ · · · ∘ v₁)(x).
- The synchronous priority updating is based on the partitioning *P* defined for the block-sequential case, but only the first updated subset is considered. If the state x is not a stable state, then there exists k such that the subset pk is the first one containing updated components: vk(x) ≠ x and vi(x) = x ∀i < k. Then vk(x) is the successor of x in this updating. Note that this type of updating is the deterministic subset of the non-deterministic priority updatings defined below.

Non-deterministic updatings

- In the asynchronous updating, all logical functions are applied independently and all successors of the state x differ from x by exactly one component: the set of successors of x is {x̄ⁱ ≠ x ∀i ∈ G}.
- In the complete updating, any number of components can be updated at once: the set of successors of x is {x̄^p ≠ x ∀p ⊂ G}. This set of successors includes all asynchronous successors, as well as the synchronous one.
- The priority updater generalizes the synchronous priority defined above by considering asynchronous updates between the blocks (priority classes). Starting with P = (p₁,..., p_m | p_k ⊂ G ∀k), the ordered partition of G defined above, each subset p_k is further partitioned in a_k subsets p_{k,1},..., p_{k,a_k}. If the state x is not a stable state, then there exists k such that the subset p_k is the first one containing updated components: v_k(x) ≠ x and v_i(x) = x ∀i < k. Then v_{k,1}(x),..., v_{k,a_k}(x) are the a_k successors of x in this updating.

3 MODEL MODIFICATIONS

Range restriction

We call $f_i^{a,b}$ the restriction of the function f_i to the range [a,b] (with $0 \le a \le b \le m_i$) such that:

$$f_i^{a,b}(x) = \begin{cases} a & f_i(x) < a \\ b & f_i(x) > b \\ f_i(x) & \text{otherwise: } a \le f_i(x) \le b \end{cases}$$

Perturbation of an interaction

The removal of an interaction (i, j) (*i.e.* the removal of *i* from the regulators of *j*) further requires the specification of $v \in S_i$ and leads to the modification of f_j , the logical rule associated to *j*.

Let $x^{i,v}$ be the state such that $x_i^{i,v} = v$ and $x_k^{i,v} = x_k \forall k \neq i$. The perturbation constructs the modified function $f_j^{i:v} = f_j(x^{i,v})$.