"Ecological validity of impulsive choice: consequences of profitability-based short-sighted evaluation in the producer-scrounger resource competition" by Ogura, Amita and Matsushima (2018) Frontiers in Applied Mathematics and Statistics (doi: 10.3389/fams.2018.00049)

Supplementary analysis of an alternative model

Alternatively, we may assume that the food patch F supplies food at a constant food supply rate (s). Supplementary Fig. 1 S schematically illustrates the alternative models. Fig. 2 S shows the parameters $(A / D$ ratio of $S S$ and $L L$) where $S S$ is more profitable than $L L$ for each of the cases shown in Fig.1S.

Profitability is given as follows:

$$
\begin{align*}
& \text { If } \Phi \text { follows } \Omega, \quad \operatorname{prof}_{P}=\frac{A}{D+A / s} \cdots \tag{1S}\\
& \text { If } \Phi \text { precedes } \Omega, \tag{2S}
\end{align*} \quad \operatorname{prof}_{P}=\frac{A+s T}{2(D+A / s)} .
$$

We will show conditions where

$$
\begin{equation*}
\operatorname{pro}_{p}(S S)>\operatorname{prof}_{p}(L L) \tag{3S}
\end{equation*}
$$

holds true for each of the following cases.
Case (1); no scrounging for both $S S$ and $L L$

$$
A_{S S}<A_{L L} \leq s T
$$

Case (2); scrounging for $L L$ but not for $S S$

$$
A_{S S} \leq s T<A_{L L}
$$

Case (3); scrounging for both $L L$ and $S S$

$$
s T<A_{S S}<A_{L L}
$$

Case (1)

The inequality (3 S) is given in the same way as the original mode, such as

$$
\begin{equation*}
\frac{A_{S S}}{D_{S S}+A_{S S} / s}>\frac{A_{L L}}{D_{L L}+A_{L L} / s} \tag{4S}
\end{equation*}
$$

which is equivalent with a much simpler form for $\forall \mathrm{s}>0$

$$
\frac{A_{S S}}{D_{S S}}>\frac{A_{L L}}{D_{L L}}
$$

meaning that $S S$ is more profitable than $L L$, when and only when the A / D ratio is larger for $S S$ than for $L L$ (Figure 2 S left).

Supplementary document to:
"Ecological validity of impulsive choice: consequences of profitability-based short-sighted evaluation in the producer-scrounger resource competition" by Ogura, Amita and Matsushima (2018) Frontiers in Applied Mathematics and Statistics (doi: 10.3389/fams.2018.00049)

Case (2)

The inequality formula (3S) is given as

$$
\begin{equation*}
\frac{A_{S S}}{D_{S S}+A_{S S} / s}>\frac{A_{L L}+s T}{2\left(D_{L L}+A_{L L} / s\right)} \tag{5S}
\end{equation*}
$$

which is equivalent with

$$
f=\frac{s\left(2 D_{L L} A_{S S}-D_{S S} A_{L L}\right)+A_{L L} A_{S S}}{s\left(s D_{S S}+A_{S S}\right)}>T
$$

meaning that T has an upper limit given by f. As the denominator is positive, an upper limit exists for $\forall s>0$ if coefficient of s in the numerator is larger than 0 , namely when

$$
\begin{equation*}
\frac{2 A_{S S}}{D_{S S}}>\frac{A_{L L}}{D_{L L}} \tag{6S}
\end{equation*}
$$

holds. If otherwise, the upper limit of T exists when food supply rate s is above a certain level given by;

$$
\begin{equation*}
\mathrm{s}>\frac{A_{L L} A_{S S}}{A_{L L} D_{S S}-2 A_{S S} D_{L L}}>0 \tag{7S}
\end{equation*}
$$

This means that $S S$ is more profitable than $L L$, if T is short enough, and the upper limit appears whenever the A / D ratio of $S S$ is higher than the half of $L L$ (as (6S) indicates). Even when the A / D ratio of $S S$ is even lower, a positive T value exists so that $S S$ is more profitable than $L L$, if s is high above the lower limit given by (7S). Similarly to the case (1), A / D ratios that satisfy the inequality (6 S) are illustrated in intermediate brown in Figure 2 S center. The area where (7S) matters is illustrated in thin brown in this figure.

Case (3)

The inequality formula (3S) is given as

$$
\begin{equation*}
\frac{A_{S S}+s T}{2\left(D_{S S}+A_{S S} / s\right)}>\frac{A_{L L}+s T}{2\left(D_{L L}+A_{L L} / s\right)} . \tag{8S}
\end{equation*}
$$

which is equivalent with

$$
g=\frac{A_{L L} D_{S S}-A_{S S} D_{L L}}{\left(D_{L L}-D_{S S}\right) s+\left(A_{L L}-A_{S S}\right)}<T .
$$

"Ecological validity of impulsive choice: consequences of profitability-based short-sighted evaluation in the producer-scrounger resource competition" by Ogura, Amita and Matsushima (2018) Frontiers in Applied Mathematics and Statistics (doi: 10.3389/fams.2018.00049)
meaning that T has a lower limit given by g, when it is positive. If otherwise, and g is 0 or negative, the inequality (9) holds for $\forall T>0$, namely;

$$
\begin{equation*}
\frac{A_{S S}}{D_{S S}} \geq \frac{A_{L L}}{D_{L L}} \tag{9S}
\end{equation*}
$$

holds. Therefore, $S S$ is unconditionally (i.e., for $\forall T>0$ and $\forall s>0$) more profitable than $L L$, in the area illustrated in dark brown in Figure 2 S right. Even when (9S) does not hold, $S S$ can still be more profitable than $L L$ if T is long enough above $g\left(8^{\prime} S\right)$.

FIGURE 1S Assumptions of the alternative model, in which s represents the slope of food supply per time, rather than the speed of food consumption per time per individual. For other terminologies see Figure 2 of the main text.

FIGURE 2S Areas of parameters (A / D ratio) for $S S$ (abscissa) and $L L$ (ordinate) where $S S$ gives rise to a higher profitability than $L L$, for Case (1), Case (2) and Case (3), respectively.

B a case (1) LL

C Case

