
Supplementary Material:
Muscle Thickness and Curvature Influence Atrial
Conduction Velocities

1 MACROSCOPIC DERIVATION OF THE BIDOMAIN MODEL

We assume that the homogenization assumptions hold, and we derive the bidomain model
phenomenologically, starting from charge conservation in quasi-static conditions. Consider the intracellular
and extracellular fluxes,

ji = −Di∇Vi, je = −De∇Ve, (S1)

in which Di = σt
iI+

(
σf

i − σt
i
)
f⊗ f and De = σt

eI+
(
σf

e − σt
e
)
f⊗ f are the intracellular and extracellular

conductivity tensors, and Vi and Ve are the intracellular and extracellular electric potentials. Here, σf
i and σt

i
denote the tissue conductivities along and across the fiber direction in the intracellular space, and σf

e and σt
e

denote the extracellular conductivities, in which I is the identity matrix. Denoting with Iv
i , Iv

e and Im the
volumetric intracellular extracellular and membrane current densities, charge conservation can be written
as

−∇ · ji = −Im + Iv
i , −∇ · je = Im + Iv

e , (S2)

Taking the divergence of (S1), we find

−∇ · (Di∇Vi) = ∇ · ji, (S3a)

−∇ · (De∇Ve) = ∇ · je. (S3b)

Substituting the relations from charge conservation(S2),

−∇ · (Di∇Vi) = −Im + Iv
i , (S4a)

−∇ · (De∇Ve) = Im + Iv
e . (S4b)

The transmembrane current has two components: a capacitive current due to the ability of the cellular
membrane to separate charged ions, and a resistive current due to the ionic channels. Introducing the
membrane capacitance Cm, the cellular surface-to-volume ratio χ, and the transmembrane potential
V = Vi − Ve, the membrane current can be written as

Im = χ (Cm∂tV + Iion) . (S5)

Using the above definition (S5) in (S4a) and (S4b), we obtain the parabolic-parabolic bidomain model

∇ · (Di∇Vi) = χ (Cm∂tV + Iion)− Iv
i , (S6a)

∇ · (De∇Ve) = −χ (Cm∂tV + Iion)− Iv
e . (S6b)

1



Supplementary Material

Summing (S6a) and (S6b) and using Vi = V + Ve, we find the parabolic-elliptic bidomain model

∇ · (Di∇V ) +∇ · (Di∇Ve) = χ (Cm∂tV + Iion)− Iv
i , (S7a)

∇ · (Di∇V ) +∇ · ((Di + De)∇Ve) = −Iv
total. (S7b)

An important indicator in cardiac electrophysiology is the rate of change of the transmembrane potential.
We introduce it as a separate variable Q = ∂tV (Rossi and Griffith, 2017a), such that

∂tV = Q (S8a)

0 = ∇ · (Di∇V ) +∇ · (Di∇Ve)− χ (CmQ+ Iion (V,w, c)) + Iv
i , (S8b)

0 = ∇ · (Di∇V ) +∇ · ((Di + De)∇Ve)− Iv
total. (S8c)

The bidomain model is supplemented with a model for the ionic currents Iion given by a set of ODEs

∂tw = g (V,w) . (S9)

Here the vector w contains the gating variables, a set of internal variables describing the current state of
the ionic channels. The ionic model (S9) describes the dynamics of the channel opening and closing as a
function of the transmembrane potential V .

We refer to (Henriquez et al., 1996; Keener and Sneyd, 1998; Griffith and Peskin, 2013; Franzone et al.,
2014) for more details on models of cardiac electrophysiology.

2 THE PARABOLIC-ELLIPTIC BIDOMAIN MODEL

Denote with Ω ⊂ R3 a Lipschitz bounded domain and Γ = ∂Ω its boundary with corresponding unit
normal vector n. The muscle domain Ωm is in contact with a conducting medium Ωb, representing either
the intracavitary blood or an extracardiac bath, such that Ωm ∪ Ωb = Ω. The sets Γm and Γb represent
the boundary of the muscle and bath domains. The interface between the muscle and the bath domain is
denoted with Γi. The bidomain model with bath-loading conditions reads

∂tV = Q, in Ωm × ]0, T [ , (S10a)

0 = ∇ · (Di∇V ) +∇ · (Di∇Ve)− χ (CmQ+ Iion) + Iv
i , in Ωm × ]0, T [ , (S10b)

0 = ∇ · (Di∇V ) +∇ · ((Di + De)∇Ve)− Iv
total, in Ωm × ]0, T [ , (S10c)

∇ · (Db∇Vb) = Ib, in Ωb × ]0, T [ , (S10d)

together with the ionic model

∂tw = g (V,w) , in Ωm × ]0, T [ , (S11a)

where we set the initial conditions

V (x, 0) = V0 (x) , in Ωm, (S12a)

Q (x, 0) = Q0 (x) , in Ωm, (S12b)

w (x, 0) = w (x) , in Ωm, (S12c)
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and the boundary conditions

n · (Di∇Vi) = n · (Di∇ (V + Ve)) = Is
i , on Γm × ]0, T [ , (S13a)

n · (De∇Ve) = Is
e, on Γm × ]0, T [ , (S13b)

n · (Db∇Vb) = 0, on Γb × ]0, T [ , (S13c)

with n being the normal to the surface. Along Γi we impose the interface conditions

Vb = Ve, on Γi × ]0, T [ , (S14a)

ni · (Db∇Vb) = −ni · (De∇Ve) . on Γi × ]0, T [ , (S14b)

In (S14b) ni = nb = −ne is the normal to the muscle-bath interface Γi.

3 SPACE DISCRETIZATION

A detailed description of discretization and solver for the bidomain equation is given in Vigmond et al.
(2008). We present here a common finite element discretizationPlank et al. (2005); Franzone et al. (2006);
Seemann et al. (2006); Pathmanathan et al. (2010); Bishop and Plank (2011); Landajuela et al. (2018). The
derivation below follows the one presented by Bendahmane and Chamakuri (2017).

Denote by

(u, v)Ω =

∫
Ω
uv,

the L2 (Ω) inner-product and by

〈u, v〉Γ =

∫
Γ
uv

a functional on a boundary. The weak problem reads: for every t ∈ [0, T ], find V h ∈ Vhm,V h
e ∈ Vhm and

V h
b ∈ Vhb such that

(
∂tV

h, ϕh
)

Ωm
=
(
Qh, ϕh

)
Ωm
, (S15a)

0 =−
(
Di∇V h,∇φh

)
Ωm
−
(
Di∇V h

e ,∇φh
)

Ωm

−
(
χCmQ

h, φh
)

Ωm
−
(
χIhion, φ

h
)

Ωm
+
〈
Is

i , φ
h
〉

Γm
, (S15b)

0 =−
(
Di∇V h,∇ξh

)
Ωm
−
(

(Di + De)∇V h
e ,∇ξh

)
Ωm

−
(
Iv

total, ξ
h
)

Ωm
+
〈
De∇V h

e · ni, ξ
h
〉

Γi
+
〈
Is

i + Is
e, φ

h
〉

Γm
, (S15c)

0 =−
(
Db∇V h

b ,∇ηh
)

Ωb
+
〈
De∇V h

e · ni, ξ
h
〉

Γi
+
(
Ib, η

h
)

Ωb
, (S15d)

for all ϕh ∈ Vhm, ξh ∈ Vhm, and ηh ∈ Vhb . In a monolithic formulation of the problem, the continuity of
the potential at the interface, that is the interface conditions (S14a), can be enforced by simply imposing
ξh = ηh on Γi. Continuity of the fluxes on the muscle-bath interface Γi, represented by the interface
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condition (S14b), follows directly from summing (S15c) and (S15d). In this way we obtain the problem:
for every t ∈ [0, T ], find V h ∈ Vhm,V h

e ∈ Vhm and V h
b ∈ Vhb such that(

∂tV
h, ϕh

)
Ωm

=
(
Qh, ϕh

)
Ωm
, (S16a)

0 =−
(
Di∇V h,∇φh

)
Ωm
−
(
Di∇V h

e ,∇φh
)

Ωm
−
(
χCmQ

h, φh
)

Ωm

−
(
χIhion, φ

h
)

Ωm
+
〈
Is

i , φ
h
〉

Γm
, (S16b)

0 =−
(
Di∇V h,∇ξh

)
Ωm
−
(

(Di + De)∇V h
e ,∇ξh

)
Ωm
−
(
Db∇V h

b ,∇ηh
)

Ωb

−
(
Iv

total, ξ
h
)

Ωm
+
(
Ib, η

h
)

Ωb
+
〈
Is

i + Is
e, φ

h
〉

Γm
, (S16c)

for all ϕh, φh, ξh ∈ Vhm, and for all ηh ∈ Vhb such that ξh = ηh on Γi. Defining

Uh =

{
V h

e if x ∈ Ωm

V h
b if x ∈ Ωb

, ζh =

{
ξh if x ∈ Ωm

ηh if x ∈ Ωb
, (S17)

and

D =

{
Di + De if x ∈ Ωm

Db if x ∈ Ωb
, Iv =

{
−Iv

total if x ∈ Ωm

Ib if x ∈ Ωb
(S18)

we can write the weak form as: for every t ∈ [0, T ], find V h, Qh ∈ Vhm and Uh ∈ Sh(
∂tV

h, ϕh
)

Ωm
=
(
Qh, ϕh

)
Ωm
, (S19a)

0 =−
(
Di∇V h,∇φh

)
Ωm
−
(
Di∇Uh,∇φh

)
Ωm
−
(
χCmQ

h, φh
)

Ωm

−
(
χIhion, φ

h
)

Ωm
+
〈
Is

i , φ
h
〉

Γm
, (S19b)

0 =−
(
Di∇V h,∇ζh

)
Ωm
−
(
D∇Uh,∇ζh

)
Ω

+
(
Iv, ζh

)
Ω

+
〈
Is

i + Is
e, ζ

h
〉

Γm
, (S19c)

for all ϕh, φh ∈ Vhm and ζh ∈ Sh.

Taking the discrete gating variables wh to belong to the space Vhm as for V h, the weak problem for the
ionic model (S11a) reads: find wh ∈ Vhm such that(

ẇh, ϕh
)

Ωm
=
(
g
(
V h,wh

)
, ϕh
)

Ωm
, (S20)

for all ϕh ∈ Vhm.

Denoting by T h the triangulation of Ω, by T h
m ⊂ T h the triangulation of Ωm, and by T h

b ⊂ T h the
triangulation of Ωb, we take

Vhm =
{
v ∈ C0

(
Ωm
)

: vh
∣∣∣
K
∈ P1 (K) ∀K ∈ T h

m

}
, (S21)
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and
Sh =

{
v ∈ C0

(
Ω
)

: vh
∣∣∣
K
∈ P1 (K) ∀K ∈ T h

}
. (S22)

In other words, we use piecewise linear interpolation for all variables. Denote by NV = dim Vhm and
NU = dim Sh, such that NV ≤ NU (the equality holds only for the case of no bath). The solution fields
are approximated as

V h =

NV∑
A=1

NAVA, Qh =

NV∑
A=1

NAQA, Uh =

NU∑
C=1

NCUC , wh =

NV∑
A=1

NAwA. (S23)

The matrix system including the ionic model becomes

MV̇ = MQ, (S24a)

0 = −KiV − K̃iU− χCmMQ− χIion + Isi , (S24b)

0 = −KiV −KU + Iv + Isi + Ise, (S24c)

Sẇ = F (w,V) , (S24d)

in which [
Ki,AB

]
= (Di∇NA,∇NB)Ωm

, (S25a)

[MAB] = (NA, NB)Ωm
, (S25b)

[SAmBn] = (NAem, NBen)Ωm
(S25c)

[KCD] = (D∇NC ,∇ND)Ω , (S25d)[
K̃i,AD

]
= (Di∇NA,∇ND)Ωm

. (S25e)

The evaluation of the gating variables and the ionic current is done using nodal interpolation such that

[
Iion,B

]
= (Iion (V,w) , NB)Ωm

≈
(∑

A

Iion,ANA, NB

)
Ωm

, (S26a)

[FBn] = (g (V,w) , NBen)Ωm
≈
(∑

A

gANAem, NBen

)
Ωm

. (S26b)

A similar interpolation is used for the applied currents.

We refer to Pezzuto et al. (2016), and the references therein, for the analysis of the space-discretization
error for cardiac electrophysiology using the finite element method.

4 TIME DISCRETIZATION

Consider the generic system
∂tu = f (u) + g (u) . (S27)
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Typically, g represents the non-stiff part of the equation that can be treated explicitly, while f is a stiff term
requiring implicit integration. Because of the nonlinearities of the ionic models, in cardiac electrophysiology
is common to treat explicitly the reaction terms defined by the ionic currents. The linear diffusion term
is usually treated implicitly. Therefore, here g represents the contribution to the equation from the ionic
currents, while f represents the linear diffusion term. A general p-step IMEX method (IMplicit-EXplicit
method) is written as

un+1 =

p∑
j=0

ajun−j +

p∑
j=−1

∆tbjfn−j +

p∑
j=0

∆tcjgn−j , (S28)

where we used the notation un = u (tn) , fn = f (un) and gn = g (un). We shall consider the first-order
one step IMEX BDF 1 method,

un+1 = un + ∆t fn+1 + ∆t gn, (S29)

where the implicit term is computed with backward Euler and the explicit term with forward Euler. For the
second-order, method we shall use the two step IMEX BDF 2,

un+1 =
4

3
un − 1

3
un−1 +

2

3
∆t fn+1 +

2

3
∆t
(
2gn − gn−1

)
, (S30)

where we use the BDF2 method for the implicit part and the extrapolation gn+1 ≈ 2gn − gn−1for the
explicit term. Alternatively we may use the IMEX BDF 2 form

3

2∆t

(
un+1 − 4

3
un +

1

3
un−1

)
= fn+1 + 2gn − gn−1. (S31)

Therefore, the ionic current at step n are evaluated as

Inion = Iion
(
V n,wn+1

)
, (S32)

REMARK. The final linear system deriving from the above discretization of the bidomain model for both
IMEX BDF 1 and IMEX BDF 2 method can be written as



I −c∆tI 0 0

0 βM + c∆tKi K̃i 0

0 c∆tKi K 0

0 0 0 I





Vn+1

Qn+1

Un+1

wn+1


=



V∗

−KiV
∗ − J∗∗i

−KiV
∗ + J∗∗e

w∗ + c∆tF∗∗


, (S33)

with c = 1, Y∗ = Yn, Y∗∗ = Yn for IMEX BDF 1 and c =
2

3
, Y∗ =

4

3
Yn − 1

3
Yn−1, Y∗∗ = 2Yn − Yn−1

for IMEX BDF 2, with Y∗ = {V∗,Q∗} and Y∗∗ = {J∗∗, J∗∗e ,F∗∗}.
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PROOF. IMEX BDF 1: Using nodal quadrature for the ODEs system corresponding to w we find

Vn+1 = Vn + ∆tQn+1, (S34a)

χCmMQn+1 + K̃iU
n+1 = −χIion

n + Isi , (S34b)

KiV
n+1 + KUn+1 = −Ivtotal + Isi + Ise, (S34c)

wn+1 = wn + ∆tFn. (S34d)

Using now the first equation to eliminate Vn+1 in the second and third equations,

Vn+1 = Vn + ∆tQn+1, (S35a)

[χCmM + ∆tKi]Q
n+1 + K̃iU

n+1 = −KiV
n − χIion

n + Isi , (S35b)

[∆tKi]Q
n+1 + KUn+1 = −KiV

n − Ivtotal + Isi + Ise, (S35c)

wn+1 = wn + ∆tFn. (S35d)

Using the shorthand notation, β = χCm, J
n
i = χIion

n +
(
Isi
)n+1 and Jne = −

(
Ivtotal

)n+1
+
(
Isi
)n+1

+ (Ise)
n+1

we write the system as

Vn+1 = Vn + ∆tQn+1, (S36a)

[βM + ∆tKi]Q
n+1 + K̃iU

n+1 = −KiV
n − Jni , (S36b)

[∆tKi]Q
n+1 + KUn+1 = −KiV

n + Jne , (S36c)

wn+1 = wn + ∆tFn. (S36d)

IMEX BDF 2: Using the IMEX BDF 2 formulas and proceeding similarly to the IMEX BDF 1 case we
find

Vn+1 =
4

3
Vn − 1

3
Vn + c∆tQn+1, (S37a)

[βM + c∆tKi]Q
n+1 + K̃iU

n+1 = −Ki

(
4

3
Vn − 1

3
Vn−1

)
−
(
2Jn − Jn−1

)
, (S37b)

[c∆tKi]Q
n+1 + KUn+1 = −Ki

(
4

3
Vn − 1

3
Vn−1

)
+
(
2Jne − Jn−1

e
)
, (S37c)

wn+1 = wn +
2

3
∆t
(
2Fn − Fn−1

)
. (S37d)

The above schemes are only conditionally stable. The choice of the timestep follows the CFL-like
condition ∆t < h/vf, as given in Rossi and Griffith (2017a), where h represents the mesh size and vf
represents the conduction velocity in the fiber (longitudinal) direction. Although this choice may not be
appropriate for all choices of the ionic model (S9), in many practical cases the timestep derived by the CFL
conditions above is usually smaller than the one required to guarantee temporal stability. This is because
very fine spatial resolution (h < 100µm) is needed to correctly capture the sharp wavefront. For a detailed
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error analysis of the temporal schemes described in this section, we refer to Ethier (2008); Roy et al. (2017),
and the references therein.

5 ALGORITHMIC IMPLEMENTATION

The block structure of equation (S33) indicates that only the variables Qn+1 and Un+1 need to be solved
as a unique block. In fact, given equations (S36a) and (S37a), the transmembrane potential Vn+1 can be
explicitly updated once Qn+1 is known. Given the block structure of equation (S33), it is possible to solve
the system in 3 steps:

1. Solve the ionic model
wn+1 = w∗ + c∆tF∗∗, (S38)

at each node and evaluate the currents J∗∗ and J∗∗e using the updated values of w as defined in (S32).
2. Solve the linear system βM + c∆tKi K̃i

c∆tKi K


 Qn+1

Un+1

 =

 −KiV
∗ − J∗∗i

−KiV
∗ + J∗∗e

 . (S39)

Symmetrizing the system such that c∆tβM + c2∆t2Ki c∆tK̃i

c∆tKi K


 Qn+1

Un+1

 =

 −KiV
∗ − J∗∗i

−KiV
∗ + J∗∗e

 , (S40)

we solve this block system using FGMRES (up to 1e-6 relative tol) with Block Gauss-Seidel
preconditionerBrown et al. (2012); Balay et al. (1997, 2017), in which each sub-block used AMG
preconditioners from Hhypre (Falgout and Yang, 2002; Falgout et al., 2010). Specifically, system (S39)
is solved using the PETSc command-line:
-bidomain_ksp_type fgmres -bidomain_ksp_rtol 1e-6
-bidomain_pc_type fieldsplit
-bidomain_fieldsplit_v_pc_type hypre
-bidomain_fieldsplit_ve_pc_type hypre
in which the v field represents the degrees of freedom associated with Q and ve represents those
associated with U.

3. Update Vn+1 = V∗ + c∆tQn+1.

Note that it would be possible to solve for Vn+1, Qn+1, and Un+1 at once in Step 2. Since the best solution
strategy would be to use backward substitution of Qn+1 in the equations for Vn+1, the resulting algorithm
would be identical to the one presented here. Assembling a global matrix for the variables Vn+1, Qn+1,
and Yn+1 would only increase the memory used by the algorithm.

6 BATH-SIZE AND CURVATURE WITH CUBIC REACTIONS

The choice of the ionic model can influence the rate of convergence of the numerical scheme. In fact,
many ionic models in the literature include discontinuous equations that may prevent numerical schemes to
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Figure S1. A) The extracellular potential on selected curvatures for the bath thickness of 3 mm. Inside the
muscle, the rapid change between positive (red) and negative (blue) values of Ve locate the wave-front. In
the bath, the solution does not have large gradients. B) Endocardial conduction velocities for varying bath
thicknesses and muscle thickness of `m =1.5 mm with the cubic reaction model.

converge with their optimal rate (Arthurs et al., 2012). As already shown by Rossi and Griffith (2017b), a
simple cubic reaction term can give second-order convergence rates. Therefore, we set the ionic current to
be given asPezzuto et al. (2016)

Iion = Iion (V ) = k (V − V0) (V − V1) (V − V2) , (S41)

in which V0, V1 and V2 are the resting, threshold and depolarization potentials, and k is a parameter
controlling the steepness of the wavefront. In the following tests, we set k = 1400, V0 = −85 mV,
V1 = −57.6 mV and V2 = 30 mV. Although this simple reaction term cannot reproduce the repolarization
of the cardiac cells, it can be used as an idealized model of the wave-front propagation. Here, we fix
the muscle size to `m = 1.5 mm and we consider baths of size `b = 0, 0.05, 0.15, 0.3 and 0.4 cm,
corresponding to the bath-tissue thickness ratios, 0:1, 1:3, 1:1, 2:1, 3:1.

We show in Fig. S1A, the extracellular potential and the bath potential at t = 20 ms computed using a
bath thickness of 3 mm for some of the tested curvatures. The sharp change in sign of the extracellular
potential (passing from red to blue) in the tissue region localizes the wave-front. We can see from Fig. S1A
that the wavefront has different shapes at different curvatures.

The resulting conduction velocities, shown in Fig. S1B, demonstrate the dependence on the domain
curvature. Fig. S1B shows that the size of the bath together with curvature influence the measured
conduction velocities.

Finally, we show in Fig. S2 the bipolar signals registered on the endocardial surface Γi for several bath
thicknesses. The perfusing bath reduces the amplitude of the signal which reaches an amplitude of about
12 mV for bath thickness greater than 0.15 cm. The effects of the curvature on the bipolar signal are small
and we show the signals only for the straight case and for the largest curvature magnitudes.

REFERENCES

Rossi S, Griffith BE. Incorporating inductances in tissue-scale models of cardiac electrophysiology. Chaos:
An Interdisciplinary Journal of Nonlinear Science 27 (2017a) 093926. doi:10.1063/1.5000706.
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Figure S2. Bipolar signals V 2
e − V 1

e recorded at 1 kHz for three selected curvatures κ =
π/2 cm−1, 0 cm, π/2 cm−1) for different bath sizes and muscle thickness `m = 1.5 mm using the cubic
reaction model. A,B,C) Bipolar signals for bath sizes between 0-2 mm. D,E,F) Bipolar signals for bath
sizes between 1.5-6 mm. An overlap of the data has been used between the top and bottom rows to better
understand the differences in signals for different bath sizes. The curvature of the domain does not play a
major role in the recorded signals. Large differences in the signal amplitudes can be found for bath sizes
smaller than 2 mm. Although minor differences can also be noted for bath larger than 1.5mm, the amplitude
of the signals is well captured for baths of size at least 3 mm.
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