
APPENDIX

Derivation of the expected SDS under Hardy-Weinberg equilibrium

The SDS for finite samples under Hardy-Weinberg equilibrium can be derived by combinatorial arguments.
More precisely, for biallelic variants the Hardy-Weinberg equilibrium is equivalent to a random sampling
process whereby the p alleles for each individual are independently sampled from an infinite pool containing
only two types of alleles. If we condition on the number of alleles of each type sampled in the whole
sample (j and pn� j respectively) then the probability of a given configuration of DD Id can be found
as the ratio of the number of choices of j alleles that return the DD Id versus the number of all possible
choices of j alleles of the first type out of pn. The latter contribution is
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can be found by multiplying the multinomial coefficient describing the number of ways to distribute the m
individuals among all dosage classes according to the DD Id, i.e.
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by the binomial coefficients describing the number of ways to distribute the dx alleles between the p
homologous chromosomes of the xth individual,

nY

x=1

✓
p

dx

◆
=

pY

d=0

✓
p

d

◆Id
=

p�1Y

d=1

✓
p

d

◆Id
.

Putting together the two contributions, we find that their ratio corresponds to equation (5).

Derivation of the HTS estimators of variability

Derivation of Tajima’s estimators for autopolyploids

A polyploid individual from a population in Hardy-Weinberg equilibrium behaves similarly to a pooled
sample of p haploid individuals. Both p

p�1⇡j (where ⇡j is the average pairwise difference between reads
from the jth individual) and ⇡j,k (the average pairwise difference between pairs of reads from the jth and
kth individual) are unbiased estimators of ✓ under Hardy-Weinberg equilibrium, as implied by the results
on unbiased estimators for pooled samples from Ferretti et al. (2013). Weighting all individuals and ordered
pairs of individuals equally, we obtain the estimator (9). However, it is possible to improve this estimator
by considering the variance of each estimator. Approximating the estimators as independent, the Minimum
Variance Unbiased Estimator corresponds to the linear combination
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Exact formulae for the variance of ⇡j are available in Ferretti et al. (2013). However, for simplicity,
we approximate the variances by the delta method. In this approximation, Var[⇡j ] ⇡ 4(1� 2fj)2Var[fj ]
and Var[⇡j,k] ⇡ (1 � 2fj)2Var[fk] + (1 � 2fk)

2Var[fj ] where fj denotes here the fraction of reads
containing the derived allele. The variance of the number of reads is the result of a double sampling process
(sampling of homologous chromosomes from the population, then sampling of reads from homologous



chromosomes). This double binomial sampling gives Var[fk] ⇡
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of the sum corresponds to a part of the sampling process. Assuming all frequencies to be similar, we
obtain the simple results Var(⇡j) / 4(1/rj + 1/p), Var(⇡j,k) / 1/rj + 1/rk + 2/p, where the common
multiplicative factor is irrelevant. Inserting such variances in the above equation, we obtain the estimator
(10).

Derivation of the formula for the effective sample size

The number of homologous chromosomes sampled is the sum of indicator variables (one for each
chromosome) of value 1 if the chromosome has been sampled and 0 otherwise. By the linearity of
expectations, the expected number of homologous chromosomes sampled with rj(x) sequencing reads
(coming from individual j, and covering position x in the genome) corresponds to the number of
homologous chromosomes p for that individual multiplied by the probability of sampling a given
chromosome. The complementary probability of not sampling a given chromosome is (1 � 1/p)rj(x).
Hence, averaging over all positions, we obtain equation (12).

Derivation of Zeng’s estimator for autopolyploids

For each position x, the expectation of cj(x) conditional on the dosage dj of the jth individual is rj(x)
dj
p

from binomial sampling. The expectation of the dosage is
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j=1 rj(x). However, note that the case where cj(x) = rj(x) for every individual
j would not be considered as a polymorphism in the statistic, hence we have to remove the contribution of
such cases. The normalisation factor is precisely the complementary of the probability of these cases. The
normalisation factor can be obtained from the same approach as in Ferretti and Ramos-Onsins (2015); in
fact, it is just a simplification of the normalisation of equation 34 therein.

Derivation of the Hardy-Weinberg violations in the DD

Derivation of the DD with polysomic inheritance and selfing

The equilibrium condition can be derived by requiring that the dosage Ieq
k should be equal to the same

dosage after a generation of crossing with polysomic inheritance. The dosage of each parent is chosen
according to the same distribution Ieq

k , then half of the chromosomes are sampled from each of the two
parents (resulting in a hypergeometric distribution Hyp(a|k0, p/2, p) for the allele count a) and combined
to form the dosage of the offspring. This leads to equation (16). The resulting equation (16) is quadratic in
Ieq
k and is solved by all combinations of Hardy-Weinberg distributions Ieq
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A single selfing event would remove an individual with DD Ieq
k and replace it with an offspring with p/2

and p/2 chromosomes sampled from the same parent. By multiplying this by the (small) probability of
selfing ps, we find equation (17). Since ps is an overall factor, the shape of the violations of Hardy-Weinberg
in the DD depends only on the initial equilibrium DD Ieq

k .

Derivation of the DD with disomic inheritance and selfing

This derivation is similar to the previous one, except for the sampling term from a single parent during
selfing. Such term is the product of the probability that the parent has h heterozygote genotypes among

the disomically inherited pairs of chromosomes — which corresponds to
(

p/2

h;k
0�h
2 ;p�k0�h

2
)·2h

( p
k0)

by standard

combinatorial arguments on the way to distribute the derived alleles among the p/2 pairs and then among



the h heterozygotes — and the binomial distribution of the number of heterozygotes that survive the selfing
process — which corresponds to
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For mixed disomic/polysomic inheritance, as long as the selfing probabilities are small, the joint
probability of polysomic and disomic selfing is negligible, then the two violations do not interfere and the
overall violation is a linear combination of the disomic and polysomic ones.

Derivation of the DD with polysomic inheritance and selection

The derivation for the equilibrium condition (20) is similar to the case without selection; however, in this
case selection on dosage changes the choice of parents. Individuals are chosen as parents with probability
proportional to their fitness, and hence the dosage distribution of parents is weighted by the fitness �d of
each dosage class: Ieq
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. The rest of the derivation proceeds as in the case without selection.

For the purpose of this paper we made no attempt at solving the non-linear equation (20). Instead, we
expanded the equation at first order for small selection coefficients sk and small deviations Ieq

k � I0
k from

the Hardy-Weinberg equilibrium, denoted by I0
k . The resulting equation (21) is a linear non-homogeneous

system for �Ik. Through numerical tests for every selective pressure and ploidy analysed in this paper,
we found out that the homogeneous system always contains non-trivial null eigenvalues. Hence the
equilibrium under selection cannot be solved perturbatively, as small perturbations corresponding to such
null eigenvalues are actually unstable and tend to grow in time. However, the leading term driving this
growth provides a good illustration of the typical shape of the corresponding Hardy-Weinberg violations.
To find it, we add a small term �"�Ik (with " ⌧ 1) to the r.h.s. of equation (21), which allows to solve the
inhomogeneous linear system. The resulting stationary solution diverges as 1/". We extract this divergent
contribution; from the theory of matrix differential equations, it corresponds to the leading term by which
Hardy-Weinberg violations increase.


