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Supplementary Material.
The mixing of polarizations in the acoustic
excitations of an isotropic random medium

1 SUPPLEMENTARY NOTE 1

We show that in the case of an exponential decay of the covariance function it is |Ry(q,w,€?)| <
L1 in the domain of the (w, ) plane specified in Sec. 3.2 of the main text , i.e. ¢o; < ¢}, and

i =2 i
¢ Y0\ fax

qg <K MZTL{Z} [q}‘\/[ax.

It can be inferred from Eq. 37 in the main text that for ¢ > qq; (i.e. ¢ ~ qé‘/[ az)>

a) Q%Z —¢?<0;

b) Re{AX}(q,w)} < 0;

¢) |Re{AX}(q,w)}| definitively increases by increasing ¢ with a ¢° leading term (see Fig. 2);
d) Im{AS}(q,w)} > 0;

e) Im{AX}q,w)} < 1.

Point a) is valid because go; ~ do; when €2 is small. To support of point ¢), Fig.[S1|shows the wavevector
trend of |Re{AY}(q,w)}|, [Im{AZ}(q,w)}| and |AX}(q,w)| for a given value of qo; < ¢4, For
q ~ ¢\,, we observe that the value of [Im{AX}(q,w)}| is negligible with respect to the value of
|Re{AX}(q,w)}|. We will call the wavevectors region : ¢ ~ ¢4, , the ‘high-¢’ region.

In the ‘high-q’ region,
~2

has a maximum in g; : g—;\Re{Ai%(ﬁi,w)}] =1- %;

1
. 2 <
|@i— 0~ S * A%} (qw))|
?
ii) the function —————
|90 —0*— 2 4* A% (W)
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1) the function

monotonically decreases by increasing q for g > g;.

i) itis g; < ¢4y
. , . 2 ~a ~2 L.
iv) for g > @' ,.» where @y, : 27|R6{A2i1(q§waw,w)}| =2[1 — @5[0’ )2], it is

1
- V) = S
@i~ — 5 *AX} (qw))|

K

_ 1
|fj(2)7;_q2| )
The behavior described in points i) and ii) can be furthrmore observed in Figure 1, Panels 3, in the

main text. We prove in the following point iii). The other points follow immediately from points a)-e).
Since g; belongs to the ‘high-¢’ region, it is gp; < ¢; and, furthermore, it follows from point e) that

~ ~ ~2 ~
%mzzl(qi,wn ~ §|R6{A2}(qi,w)}| =1 - % < 1 (equal to 1 in the limit £ — 0). It is thus

&|A%H ;. w)| < 1. from which it follows ; < g,

In the following we define an upper bound for |Rj(q,w,€?)|. First, we estimate the contribution
to the rest function for ¢ > ¢V, = Mmax[qh .. Tiresl- We will call it R}';(q,w,ez) =
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Figure Sl1. éQﬂZHAilL(T)(q,w)\ (black line), Im[ﬁ—“’—%Af}i(T)(q,w)] (dashed line) and
()

L)
2 ~
]Re[#TL)AElL(T)(q,w)H (grey line) as a function of ¢ for a fixed value of aqyr(ry < aqﬁz.

The covariance function is an exponential decay function. The theory’s input parameters are listed in the
main text.

f dx Lygii () % E] 7*(q,w, €2, z). From points a) and iv) it follows that

9 oo /2 [e%e] q/2
’f?(qawa € 737)‘ = ’ / dq,c(% qlv'r) N 2 ~ ‘ S / dqlc(% q/,$)—~2. (Sl)
Waa G — 4% — PA (W) o, 9% = o,

12

It is fq?\%w dq’c(q,q’,x)q,gfﬁ ~ # L < L by recalling that ¢%,, ~ ¢4, c(q,¢,z) =

2 qu aqulI aqMaz

/ . ) '

%(1+(aq/)2+(a(g)qz)_2(aq)(aq) )2 aqlyae > 1 for small values of 2—12 and ¢,q0; < q4;,,- Because
1

2y de| Ligii ()| = O(1), finally itis | Ry (q,w, )| S 32, 2 oF: aq;

If qé\} ar = QZM ax > qfw .z» WE need, in addition, to estimate the order of magnitude of

¢’

qMaa: d
q'c(q,q',2)- - : (52)
| f ( )q?)l 2= S 2ASH A w) |
We instead take into account the following integral
5 Lo i $3
T; (xy q,w, 6 f pY; q C(q q ZL') qu q’QfZ—;q’QAi}(q’,w)’ ( )

%

where 0° = @, — ;- 1S [¢4 00 Tagae) C 1@ — 0%, T; + 6] because g; < q',,.- We show in the following
that O(|7¢(z, q,w, €?)|) = O(|7¥ (z, q,w, €2)|). Since the power series expansion of < G(q,w) >! defined
in Theorem I in the main text converges a.e. for ¢ < ; — §° < q}w o> WE can refix the upper integration
boundary of the integral in Corrolary II (Eq. 34 in the main text) to g; — &°. This will not affect the
domain of the (w, ¢) plane where the GBA can be applied because the contribution to the integral defining
the self-energy for ¢ € [g; — 0, q; + 0" = q Maa:] results to be of the same order of magnitude of the

remainder function. The function - in the ‘high-¢’ region has a local maximum in
|45;—4 f;ngAEi (q.w)]
7
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7;, as described in point i), see also Figure 1, Panels 3, in the main text. This function is a peak-like

2 ~
function centered in ;. We notice that G2, — 7 — %G?Re{AEl(qi, )} = 0. In a neighbor of g; small

enough we can thus make the following approximation 1 — ; = Re AZl ) ~ Ai(q —q;), where
g £ app 2 q,w q9—4;

A; = d—q[ - éwRe{AZ} (q, w)}]|4=g,- An approximate expression for the constant A; can be obtained

by considering that in the ‘high-¢’ region Re{AX!(q,w)} ~ —Ciq?, as it can be derived from points b)
and c). The constant C; should satisfy the condition

2 2
1— TWRe{AE (G, w)} ~1— %Cﬁ% =0,

G do; —

being Go; < @;. It is thus A; ~ —2—2201-2@- = —%. We define n; = fiq ]m{AE (G, w)} ~

1 107
%I m{Ai} (g;,w)} > 0, see point d). Furthermore from point e) it follows that 7; < 1. In the interval

[@; — 6°,q; + '] we can thus take

l 1 1 S4
@Bi—a? 5 AT qw) ~ @ Alga) v (54)

7,

It follows that

q;+0° 12 Ald —a
q z(q Qi)
(g0, )| ~ / dq'clg, . 2)= )
| ‘ G — 4% [Ai(d —G;))* + 0
q; 46" 12 , 2
Y q i q; 1
—i dq'c(q, ¢, v)= (¢, 7) = ~ ——. (S5)
/qi—éi Go; — ¢ [Aild —@)* + 0} 7~ |A | - @ 2mag;
/2 — 2
We assumed that in the integration interval c(q, ¢, ©) —5— ~ c(q, q;, )2‘1—~2 ~ 4 L since g, belongs
q"?—qg; 7;—qy; ™ (ag;)

to the ‘high-¢’ region and consequently ag; > 1, ¢ < @, qoi < G;- Furthermore, we observe that the
integrand of the first integral in Eq. [S5|is symmetric with respect to the center of the integration interval.
This integral is thus zero. The integrand of the second integral is a Lorentz function of area ‘Z—W. We finally

considered that 7; < &°, as follows from point ¢). Because both g; and q}w .o Delong to the ‘high-¢’ region
1 1
Wi adyra,

2 SUPPLEMENTARY NOTE 2

We provide a numerical estimation of the absolute value of the remainder function related to the GBA
for given values of frequency and wavevector. We furthermore verify by a numerical estimation that the
absolute value of the term Fk} (q,w) is significantly larger than such a value. Finally we numerically verify
the consistency of the approximation AX!(q,w) ~ AX!(0,w) while calculating F}! (g, w). To this aim we
numerically computed the following integrals, with aqpy, = 1.3 and aqg = 1.2,

i — d L QMaa: d 1 .
LL(q, w)<q1\4ax f X LL fo q q C<q q Z’) qu q —7(]/2A21( )
Jai 2= Y deLpp()Z [ dg L :

LL(‘L‘%E ) f—l x LL(x) c% fq]l\’/[am q q C(q q LU) qu q?— 2q/2A21L(q/:W)
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The theory’s input parameters are the same listed in the main text. For such input parameters it is aq]% ar =

2 o
18, as it is possible to observe in Fig. 1, Panel 2 -a) in the main text. We obtain %\ELL <db (aqor =

1.3,ag = 1.2)] =3.3-107! and |RLL(aq0L =1.3,aq = 1.2)| = 1.0 - 1073. We can compare the latter

quantity with the upper bound estlmation for ]R 1|, given in the main text and assessed in Supplemenatry

2
Note 1,ie. ~ £ 521 —30.1073. We furthermore numerically evaluate the quantity
C% S YN ax
2 2. '
) q ¢ AYL(d W)
Fr(qw) f drLpp(z foM‘” dq' q*clq.q, x)W’

2
achieving %|F£L(aq0L = 1.3,aq = 1.2)| = 6.6 - 1072, which is a value significantly larger than
|Rrr(aqor = 1.3,aq = 1.2)].

2
We finally numerically calculate c’é—%|Fle(aqOL 1.3,aq = 1.2)| = 9.0 - 1072, where F}% is equal to

but AY! 1 (q,w) is replaced by AYL(0 1(0,w). This latter can be compared with the numerical evaluation
of ”2 |F}; (agor, = 1.3,aq = 1.2)] obtained above, i.e. 6.6 - 1072,

3 SUPPLEMENTARY NOTE 3

We show that when in the domain of validity of the GBA the approximation AYL(q’,w) ~ AXL(0,w)
holds, it is possible to extend the upper integration boundary of the integral defining Fk1 (q,w) to infinity.
The related error is of the same order of magnitude of | Ry (q, w, ¢2)|. We observe that

00 L9 , q/2 1 00 A . q/2 1
/i dq' q C(q,q,:v)ﬁl .AE (0, w)] S/i dq' q C(q,q,fﬂ)( T2 g
ANl ax q qu ¢ A fax q 40; IMax
(S6)

In the region of frequency where %AiLM(w (w) < 1indeed it is < Z |AZ”( w)| < 1. Furthermore for

q > ¢ Vaze 1118 qo; <K q. If the approx1mat10n AZ”(q W) ~ Af]}i(o, w) holds, the Hadamard Principal
value of the integral deﬁmng F1 (q,w) can be calculated by exploiting the Residue Theorem because the

22 AEl 5(0,w)]
function z c(q, z,1) W has only non-essential singularities in the complex plane.
I ' We take the definition #f @ (;3>2 = lzmnﬁo[fzo m (z{(;z)z der + fzoJrn If(fg) de — @] It s
2A o~ ~ A . .
lzm,,_,o[quoolj': q?c(q,q, m)%@%)?)dq - qgic(q,qo,x)W] = 0. Indeed, given the continuity of the function c(q,q’,z) and
~ ~ 12
AS;(q',w) in §o;, the quantity in the brackets can be approximated by the expression £(n) = (g, Go, )G, A% (Goi, w) | ;Ooir;i (G
4 0i ™~
~2 2 ~
dq’ — %} = limnﬁo[ﬁ(l - 44q;§i:2:2 ) = l”(;ggzlz )] It is hence lim,—0&(n) = 0. In the numerical computation we assume
S a2 AT (@ w) S a2 AS; (@ w)
aw & ‘ i—0.5 2 § e ?A5; (¢ w)
#qu q/QC(q q, Z)qu/ = fgqo /20((1 q, m)qu + qu(f_05q'20(q,q 93)777(#2)2@'- We can

take the quantity £(n = 0.5) = 0.005 as the related error.
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4 SUPPLEMENTARY NOTE 4

AS) (¢ w)—AS
AEl 5 (0, w)

the integral defing F}! (q,w) can be obtained trough the approximation AZ“(q W) ~ Az}i(o, w). Itis

We show that as long as the condition | \ < 2 is fulfilled the dominant contribution to

1 ] 1 27T (ﬁ\/[aa: ;2 '
Fi(q,w) = lim,, o+ d$kaii($)é—2 dq' q c(q,q )
-1 5 J0

& N ~ it
3q/2AZ“(O’w’7) E—zCIIQ [AYi(q', wy) — AX5(0,wy)]

+ b7
2 2)2 -2 2)2
(qum —q"7) (quﬂ? —q"?)
If A} (aw)—A%; (0) < 1 in the integration interval [0 . the integral of the first term
ASL(0, o) 2 g Maz g
of the summation in Eq. [S7] is the dominant. In support of this statement we observe that
. o q/2 . 62 q/2
limi, o+ JMe dg' ¢Pelq, x)gm < limyge| [ dg qPela,q w)ﬁl The

inequality is obtained by exp101t1ng Eqs 22 and 24 with N = 1 in the text, recalling that c(q, ¢,x) e RT
and |Re[z]| + [Im[z]| <
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