
Supplementary Material:
The mixing of polarizations in the acoustic
excitations of an isotropic random medium

1 SUPPLEMENTARY NOTE 1

We show that in the case of an exponential decay of the covariance function it is |R̃k(q, ω, ε2)| .∑
i

1
c̃2i

1
aqiMax

in the domain of the (ω, q) plane specified in Sec. 3.2 of the main text , i.e. q0i � qiMax and

q �Min{i}[q
i
Max.

It can be inferred from Eq. 37 in the main text that for q � q0i (i.e. q ∼ qiMax),

a) q̃2
0i − q2 < 0 ;

b) Re{∆Σ̃1
i (q, ω)} < 0;

c) |Re{∆Σ̃1
i (q, ω)}| definitively increases by increasing q with a q2 leading term (see Fig. 2);

d) Im{∆Σ̃1
i (q, ω)} > 0;

e) Im{∆Σ̃1
i (q, ω)} � 1.

Point a) is valid because q0i ∼ q̃0i when ε2 is small. To support of point e), Fig. S1 shows the wavevector
trend of |Re{∆Σ̃1

i (q, ω)}|, |Im{∆Σ̃1
i (q, ω)}| and |∆Σ̃1

i (q, ω)| for a given value of q0i � qiMax. For
q ∼ qiMax we observe that the value of |Im{∆Σ̃1

i (q, ω)}| is negligible with respect to the value of
|Re{∆Σ̃1

i (q, ω)}|. We will call the wavevectors region : q ∼ qiMax, the ‘high-q’ region.

In the ‘high-q’ region,

i) the function 1

|q̃20i−q2−
ε2

c̃2
i

q2∆Σ̃1
i (q,ω)|

has a maximum in qi : ε
2

c̃2i
|Re{∆Σ̃1

i (qi, ω)}| = 1− q̃20i
q2i

;

ii) the function 1

|q̃20i−q2−
ε2

c̃2
i

q2∆Σ̃1
i (q,ω)|

monotonically decreases by increasing q for q > qi.

iii) it is qi ≤ qiMax;

iv) for q > qiMax, where qiMax : ε
2

c̃2i
|Re{∆Σ̃1

i (qiMax, ω)}| = 2[1− q̃20i
(qiMax)2

], it is 1

|q̃20i−q2−
ε2

c̃2
i

q2∆Σ̃1
i (q,ω)|

≤

1
|q̃20i−q2|

.

The behavior described in points i) and ii) can be furthrmore observed in Figure 1, Panels 3, in the
main text. We prove in the following point iii). The other points follow immediately from points a)-e).
Since qi belongs to the ‘high-q’ region, it is q̃0i < qi and, furthermore, it follows from point e) that
ε2

c̃2i
|∆Σ̃1

i (qi, ω)| ∼ ε2

c̃2i
|Re{∆Σ̃1

i (qi, ω)}| = 1 − q̃20i
q2i
≤ 1 (equal to 1 in the limit q̃0i

qi
→ 0). It is thus

ε2

c̃2i
|∆Σ̃1

i (qi, ω)| ≤ 1, from which it follows qi ≤ qiMax.

In the following we define an upper bound for |R̃k(q, ω, ε2)|. First, we estimate the contribution
to the rest function for q > qi∗Max = max[qiMax, q

i
Max]. We will call it R̃∗k(q, ω, ε2) =

1
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Figure S1. µ20
c̃2
L(T )

|∆Σ̃1
L(T )(q, ω)| (black line), Im[ µ20

c̃2
L(T )

∆Σ̃1
L(T )(q, ω)] (dashed line) and

|Re[ µ20
c̃2
L(T )

∆Σ̃1
L(T )(q, ω)]| (grey line) as a function of q for a fixed value of aq0L(T ) � aq

L(T )
Max .

The covariance function is an exponential decay function. The theory’s input parameters are listed in the
main text.

∫ 1
−1 dxLkkii(x)2π

c̃2i
r̃∗i (q, ω, ε2, x). From points a) and iv) it follows that

|r̃∗i (q, ω, ε2, x)| = |
∫ ∞
qi∗Max

dq′c(q, q′, x)
q′

2

q̃2
0i − q′2 −

ε2

c̃2i
q′2∆Σ̃1

i (q′, ω)
| ≤

∫ ∞
qi∗Max

dq′c(q, q′, x)
q′

2

q′2 − q̃2
0i

. (S1)

It is
∫∞
qi∗Max

dq′c(q, q′, x) q′
2

q′2−q̃20i
∼ 1

π2
1

aqi∗Max
≤ 1

aqiMax
, by recalling that qi∗Max ∼ qiMax, c(q, q′, x) =

a
π2

(aq′)2

(1+(aq′)2+(aq)2−2(aq)(aq′)x)2
, aqiMax � 1 for small values of ε2

c̃2i
, and q, q0i � qiMax. Because∫ 1

−1 dx|Lkkii(x)| = O(1), finally it is |R̃∗k(q, ω, ε2)| .
∑

i
2
π

1
c̃2i

1
aqiMax

.

If qi∗Max = qiMax > qiMax, we need, in addition, to estimate the order of magnitude of

|
∫ qiMax

qiMax
dq′c(q, q′, x) q′

2

q̃20i−q′2−
ε2

c̃2
i

q′2∆Σ̃1
i (q′,ω)

|. (S2)

We instead take into account the following integral

r̃δi (x,q, ω, ε
2) =

∫ qi+δi
qi−δi

dq′c(q, q′, x) q′
2

q̃20i−q′2−
ε2

c̃2
i

q′2∆Σ̃1
i (q′,ω)

, (S3)

where δi = qiMax− qi. It is [qiMax, q
i
Max] ⊂ [qi− δi, qi+ δi] because qi ≤ qiMax. We show in the following

that O(|r̃δi (x,q, ω, ε2)|) = O(|r̃∗i (x,q, ω, ε2)|). Since the power series expansion of < G(q, ω) >1 defined
in Theorem I in the main text converges a.e. for q < qi − δi < qiMax, we can refix the upper integration
boundary of the integral in Corrolary II (Eq. 34 in the main text) to qi − δi. This will not affect the
domain of the (ω, q) plane where the GBA can be applied because the contribution to the integral defining
the self-energy for q′ ∈ [qi − δi, qi + δi = qiMax] results to be of the same order of magnitude of the
remainder function. The function 1

|q̃20i−q2−
ε2

c̃2
i

q2∆Σ̃1
i (q,ω)|

in the ‘high-q’ region has a local maximum in

2
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qi, as described in point i), see also Figure 1, Panels 3, in the main text. This function is a peak-like
function centered in qi. We notice that q̃2

0i − q2
i − ε2

c̃2i
q2
iRe{∆Σ̃1

i (qi, ω)} = 0. In a neighbor of qi small

enough we can thus make the following approximation 1− ε2

c̃2i

q2

q̃20i−q2
Re{∆Σ̃1

i (q, ω)} ∼ Ai(q − qi), where

Ai = d
dq [1− ε2

c̃2i

q2

q̃20i−q2
Re{∆Σ̃1

i (q, ω)}]|q=qi . An approximate expression for the constantAi can be obtained

by considering that in the ‘high-q’ region Re{∆Σ̃1
i (q, ω)} ∼ −Ciq2, as it can be derived from points b)

and c). The constant Ci should satisfy the condition

1− ε2

c̃2i

q2i
q̃20i−q

2
i
Re{∆Σ̃1

i (qi, ω)} ∼ 1− ε2

c̃2i
Ciq

2
i = 0,

being q̃0i � qi. It is thus Ai ∼ − ε2

c̃2i
Ci2qi = − 2

qi
. We define ηi = − ε2

c̃2i

q2i
q̃20i−q

2
i
Im{∆Σ̃1

i (qi, ω)} ∼
ε2

c̃2i
Im{∆Σ̃1

i (qi, ω)} > 0, see point d). Furthermore from point e) it follows that ηi � 1. In the interval

[qi − δi, qi + δi] we can thus take

1

q̃20i−q2−
ε2

c̃2
i

q2∆Σ̃1
i (q,ω)

∼ 1
q̃20i−q2

1
Ai(q−qi)+iηi

. (S4)

It follows that

|r̃δi (q, ω, ε2, x)| ∼
∣∣ ∫ qi+δ

i

qi−δi
dq′c(q, q′, x)

q′
2

q̃2
0i − q′2

Ai(q
′ − qi)

[Ai(q′ − qi)]2 + η2
i

−

− i
∫ qi+δ

i

qi−δi
dq′c(q, q′, x)

q′
2

q̃2
0i − q′2

ηi
[Ai(q′ − qi)]2 + η2

i

∣∣ ∼ π

|Ai|
c(q, qi, x)

qi
2

q2
i − q̃2

0i

∼ 1

2π aqi
. (S5)

We assumed that in the integration interval c(q, q′, x) q′
2

q′2−q̃20i
∼ c(q, qi, x) qi

2

q2i−q̃20i
∼ a

π2
1

(aqi)
2 since qi belongs

to the ‘high-q’ region and consequently aqi � 1, q � qi, q0i � qi. Furthermore, we observe that the
integrand of the first integral in Eq. S5 is symmetric with respect to the center of the integration interval.
This integral is thus zero. The integrand of the second integral is a Lorentz function of area π

|Ai| . We finally
considered that ηi � δi, as follows from point e). Because both qi and qiMax belong to the ‘high-q’ region
we can finally assume 1

aqi
∼ 1

aqiMax
.

2 SUPPLEMENTARY NOTE 2

We provide a numerical estimation of the absolute value of the remainder function related to the GBA
for given values of frequency and wavevector. We furthermore verify by a numerical estimation that the
absolute value of the term F 1

k (q, ω) is significantly larger than such a value. Finally we numerically verify
the consistency of the approximation ∆Σ1(q, ω) ≈ ∆Σ1(0, ω) while calculating F 1

k (q, ω). To this aim we
numerically computed the following integrals, with aq0L = 1.3 and aq = 1.2,

Σ̃LL(q, ω)<qLMax
=
∫ 1
−1 dxLLL(x)2π

c̃2L

∫ qLMax
0 dq′ q′

2
c(q, q′, x) 1

q̃20L−q′2−
ε2

c̃2
L

q′2∆Σ̃1
L(q′,ω)

;

R̃LL(q, ω, ε2) =
∫ 1
−1 dxLLL(x)2π

c̃2L

∫∞
qLMax

dq′ q′
2
c(q, q′, x) 1

q̃20L−q′2−
ε2

c̃2
L

q′2∆Σ̃1
L(q′,ω)

.
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The theory’s input parameters are the same listed in the main text. For such input parameters it is aqLMax =

18, as it is possible to observe in Fig. 1, Panel 2 -a) in the main text. We obtain µ20
c0L

2 |Σ̃LL <qLMax
(aq0L =

1.3, aq = 1.2)| = 3.3 · 10−1 and µ20
c0L

2 |R̃LL(aq0L = 1.3, aq = 1.2)| = 1.0 · 10−3. We can compare the latter

quantity with the upper bound estimation for |R̃LL|, given in the main text and assessed in Supplemenatry

Note 1, i.e. ∼ µ20
c0L

2
1
c̃2L

2
π

1
aqLMax

= 3.0 · 10−3. We furthermore numerically evaluate the quantity

F 1
LL(q, ω) =

∫ 1
−1 dxLLL(x)2π

c̃2L

∫ qLMax
0 dq′ q′

2
c(q, q′, x)

ε2

c̃2
L

q′
2
∆Σ̃L(q′,ω)

(q̃20L−q′2)2
,

achieving 1 µ20
c0L

2 |F 1
LL(aq0L = 1.3, aq = 1.2)| = 6.6 · 10−2, which is a value significantly larger than

|R̃LL(aq0L = 1.3, aq = 1.2)|.

We finally numerically calculate µ20
c0L

2 |F 1∗
LL(aq0L = 1.3, aq = 1.2)| = 9.0 · 10−2, where F 1∗

LL is equal to

F 1
LL but ∆Σ̃1

L(q, ω) is replaced by ∆Σ̃1
L(0, ω). This latter can be compared with the numerical evaluation

of µ20
c0L

2 |F 1
LL(aq0L = 1.3, aq = 1.2)| obtained above, i.e. 6.6 · 10−2.

3 SUPPLEMENTARY NOTE 3

We show that when in the domain of validity of the GBA the approximation ∆Σ̃1
ii(q′, ω) ∼ ∆Σ̃1

ii(0, ω)
holds, it is possible to extend the upper integration boundary of the integral defining F 1

k (q, ω) to infinity.
The related error is of the same order of magnitude of |R̃k(q, ω, ε2)|. We observe that

∫ ∞
qiMax

dq′ q′
2
c(q, q′, x)

q′2

(q′2 − q̃2
0i)

2
|ε

2

c̃2i
∆Σ̃1

ii(0, ω)| ≤
∫ ∞
qiMax

dq′ q′
2
c(q, q′, x)

q′2

(q′2 − q̃2
0i)

2
∼ 1

aqiMax

.

(S6)

In the region of frequency where ε2

c̃2i
∆Σ̃1,Max

i (ω) < 1 indeed it is ε2

c̃2i
|∆Σ̃ii(0, ω)| < 1. Furthermore for

q′ > qiMax, it is q̃0i � q′. If the approximation ∆Σ̃1
ii(q′, ω) ∼ ∆Σ̃1

ii(0, ω) holds, the Hadamard Principal
value of the integral defining F 1

k (q, ω) can be calculated by exploiting the Residue Theorem because the

function z2c(q, z, x)
[z2 ε

2

c̃2
i

∆Σ̃1
ii(0,ω)]

(z2−q̃20i)2
has only non-essential singularities in the complex plane.

1 We take the definition #
∫ b
a

f(x)

(x−x0)2
= limη→0

[ ∫ x0−η
a

f(x)

(x−x0)2
dx +

∫ b
x0+η

f(x)

(x−x0)2
dx − 2f(x0)

η

]
. It is

limη→0

[ ∫ q̃0i+η
q̃0i−η

q′2c(q, q′, x)
q′2∆Σ̃i(q′,ω)

(q′2−q̃20i)
2 dq′ − q̃2

0ic(q, q̃0, x)
∆Σ̃i(q̃0i,ω)

2η

]
= 0. Indeed, given the continuity of the function c(q, q′, x) and

∆Σ̃i(q′, ω) in q̃0i, the quantity in the brackets can be approximated by the expression ξ(η) = c(q, q̃0, x)q̃2
0i∆Σ̃i(q̃0i, ω)

[ ∫ q̃0i+η
q̃0i−η

q′2

(q̃20i−q
′2)2

dq′ − 1
2η

]
= limη→0

[
1
2η

(1 − 4q̃20i−2η2

4q̃20i−η
2 ) − ln( 2q̃0i−η

2q̃0i+η
)
]
. It is hence limη→0ξ(η) = 0. In the numerical computation we assume

#
∫ qMax
0 q′2c(q, q′, x)

ε2

c̃2
i

q′2∆Σ̃i(q′,ω)

(q̃20i−q
′2)2

dq′ =
∫ q̃0i−0.5
0 q′2c(q, q′, x)

ε2

c̃2
i

q′2∆Σ̃i(q′,ω)

(q̃20i−q
′2)2

dq′ +
∫ qMax
q̃0i−0.5 q

′2c(q, q′, x)
ε2

c̃2
q2∆Σ̃i(q′,ω)

(q̃20i−q
′2)2

dq′. We can

take the quantity ξ(η = 0.5) = 0.005 as the related error.
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4 SUPPLEMENTARY NOTE 4

We show that as long as the condition |∆Σ̃1
ii(q′,ω)−∆Σ̃1

ii(0,ω)

∆Σ̃1
ii(0,ω)

| < 1
2 is fulfilled the dominant contribution to

the integral defing F 1
k (q, ω) can be obtained trough the approximation ∆Σ̃1

ii(q′, ω) ∼ ∆Σ̃1
ii(0, ω). It is

F 1
k (q, ω) = limη→0+

∫ 1

−1
dxLkkii(x)

2π

c̃2i

∫ qiMax

0
dq′ q′

2
c(q, q′, x)·

·
{ ε2c̃2i q′2∆Σ̃ii(0, ωη)

(q̃2
0i,η − q′2)2

+
ε2

c̃2
q′2[∆Σ̃ii(q′, ωη)−∆Σ̃ii(0, ωη)]

(q̃2
0i,η − q′2)2

}
. (S7)

If |∆Σ̃1
ii(q,ω)−∆Σ̃1

ii(0,ω)

∆Σ̃1
ii(0,ω)

| < 1
2 in the integration interval [0, qiMax] the integral of the first term

of the summation in Eq. S7 is the dominant. In support of this statement we observe that

limη→0+
∫ qiMax

0 dq′ q′2c(q, q′, x)1
2

ε2

c̃2
q′2

|q̃20i,η−q′2|2
≤ limη→0+|

∫ qiMax
0 dq′ q′2c(q, q′, x)

ε2

c̃2
q′2

(q̃20i,η−q′2)2
|. The

inequality is obtained by exploiting Eqs. 22 and 24 with N = 1 in the text, recalling that c(q, q′, x) ∈ R+

and |Re[z]|+ |Im[z]| ≤ 2|z|, where z is a complex number.
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