

# Supplementary Material

## Detailed structural characterization of arabinans and galactans of 14 apple cultivars before and after cold storage

## Daniel Wefers<sup>1\*</sup>, Ramona Flörchinger<sup>1</sup>, Mirko Bunzel<sup>1</sup>

\* Correspondence: Daniel Wefers: daniel.wefers@kit.edu

#### **1** Supplementary Methods

#### 1.1 Determination of the non-starch polysaccharides contents

Non-starch polysaccharide contents were determined according to the dietary fiber method described by Prosky et al. (1988). Briefly, 1 g of untreated, milled apple flour was sequentially digested with 100  $\mu$ L of thermostable  $\alpha$ -amylase, 100  $\mu$ L of protease, and 200  $\mu$ L of amyloglucosidase. Insoluble dietary fiber/non-starch polysaccharides were recovered by filtration and soluble polysaccharides were precipitated from the supernatant by adding of 4 volumes of ethanol. The insoluble and soluble dietary fiber/non-starch polysaccharide contents were corrected for protein (determined as NH<sub>4</sub><sup>+</sup> according to Willis et al. (1996) after Kjeldahl digestion, nitrogen conversion factor of 6.25) and ash (incineration for 5 h at 525 °C). All analyses were performed in duplicate (technical replicates).

#### 1.2 Monosaccharide analysis after acidic hydrolysis

Sulfuric acid hydrolysis of the apple non-starch polysaccharides was performed according to Saeman et al. (1945) The samples (10 mg) were swollen in 150 µL of 12 M sulfuric acid for 2.5 h, diluted with 975 µL of water, and hydrolyzed for 3 h at 100°C. After filtration and dilution, the hydrolysate was analyzed by high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) using an ICS-5000 system (Thermo Scientific Dionex, Sunnyvale, CA) equipped with a CarboPac PA20 column (150 mm x 3 mm i.d., 6.5 µm particle size, Thermo Scientific Dionex). A flow rate of 0.4 mL/min and a gradient composed of (A) bidistilled water, (B) 0.1 M sodium hydroxide, and (C) 0.1 M sodium hydroxide + 0.2 M sodium acetate were used at 25°C: Before every run, the column was rinsed with 100% B for 10 min and equilibrated for 20 min with 90% A and 10% B. After injection, the following gradient was applied: 0-1.5 min, from 90% A and 10% B to 96% A and 4% B; 1.5-22 min, isocratic, 96% A and 4% B; 22-32 min, from 96% A and 4% B to 100% B; 32-42 min, isocratic, 100% C. Methanolysis in combination with trifluoroacetic acid (TFA) hydrolysis was carried out as described previously (De Ruiter et al., 1992; Wefers and Bunzel, 2015). Briefly, 2 mL of methanolic HCl (1.25 M) was added to the sample (10 mg), and methanolysis was performed for 16 h at 80°C. An aliquot was evaporated, hydrolyzed with 2 M TFA (500 µL) for 1 h, evaporated to dryness, and the monosaccharide composition was analyzed by HPAEC-PAD as described above. In addition, the colorimetric approach described by Blumenkrantz and Asboe-Hansen (1973) was used as an additional method to determine the galacturonic acid content of the apple non-starch polysaccharides.

#### References

- Blumenkrantz, N., and Asboe-Hansen, G. (1973). New method for quantitative determination of uronic acids. *Anal. Biochem.* 54, 484-489.
- De Ruiter, G.A., Schols, H.A., Voragen, A.G.J., and Rombouts, F.M. (1992). Carbohydrate analysis of water-soluble uronic acid-containing polysaccharides with high-performance anion-exchange chromatography using methanolysis combined with TFA hydrolysis is superior to four other methods. *Anal. Biochem.* 207, 176-185.
- Prosky, L., Asp, N.G., Schweizer, T.F., Devries, J.W., and Furda, I. (1988). Determination of insoluble, soluble, and total dietary fiber in foods and food products: Interlaboratory study. J. AOAC Int. 71, 1017-1023.
- Saeman, J.F., Bubl, J.L., and Harris, E.E. (1945). Quantitative saccharification of wood and cellulose. *Ind. Eng. Chem., Anal. Ed.* 17, 35-37.
- Wefers, D., and Bunzel, M. (2015). Characterization of dietary fiber polysaccharides from dehulled, common buckwheat (*Fagopyrum esculentum*) seeds. *Cereal Chem.* 92, 598-603.
- Willis, R.B., Montgomery, M.E., and Allen, P.R. (1996). Improved method for manual, colorimetry determination of total Kjeldahl nitrogen using salicylate. *J. Agric. Food Chem.* 44, 1804-1807.

## 2 Supplementary Tables

|                   |                 | Insoluble<br>NSP | R/2 | Soluble<br>NSP | R/2      |
|-------------------|-----------------|------------------|-----|----------------|----------|
| Galiwa            | fresh           | 6.7              | 0.1 | 4.2            | 0.2      |
|                   | stored          | 7.0              | 0.0 | 5.6            | 1.4      |
| Pinova Evelina    | fresh           | 9.0              | 0.2 | 4.9            | 0.4      |
|                   | stored          | 8.8              | 0.1 | 5.2            | 0.7      |
| Elstar v. d. Zalm | fresh           | 7.0              | 0.0 | 4.8            | 1.0      |
|                   | stored          | 6.8              | 0.1 | 4.1            | 0.5      |
| Red Topaz         | fresh           | 6.9              | 0.1 | 7.6            | 1.1      |
|                   | stored          | 6.7              | 0.1 | 4.4            | 0.5      |
| PRI 037           | fresh<br>stored | 9.5              | 0.1 | 3.7            | 0.0      |
| Gemini            | fresh           | 8.9              | 0.0 | 5.4            | 0.5      |
|                   | stored          | 8.5              | 0.0 | 4.5            | 0.3      |
| Zari              | fresh           | 6.6              | 0.1 | 3.9            | 0.6      |
|                   | stored          | -                | -   | -              | -        |
| PRI 010           | fresh<br>stored | 7.4              | 0.1 | 6.1<br>-       | 0.1<br>- |
| Crimson Crisp     | fresh           | 9.3              | 0.0 | 5.3            | 0.2      |
|                   | stored          | 9.8              | 0.1 | 4.9            | 1.0      |
| Isaaq             | fresh           | 8.7              | 0.0 | 3.3            | 0.3      |
|                   | stored          | 9.6              | 0.1 | 5.7            | 1.4      |
| Allurel           | fresh           | 6.9              | 0.1 | 2.9            | 0.1      |
|                   | stored          | 6.9              | 0.4 | 3.3            | 0.2      |
| Natyra            | fresh           | 8.3              | 0.0 | 2.2            | 0.5      |
|                   | stored          | -                | -   | -              | -        |
| Lubera            | fresh           | 10.9             | 0.3 | 4.9            | 1.2      |
|                   | stored          | -                | -   | -              | -        |

**Supplementary Table 1:** Insoluble and soluble non-starch polysaccharide (NSP) contents (g/100 g dry matter) of different apple cultivars before and after storage.

All analyses were performed in duplicate (technical replicates); relative half range uncertainties were mostly < 5 %.

|                   | Α    | В    | С    | D    | Ε    | F    | G    | Η    | Ι    | J    | K    | L    | Μ    | Ν    |
|-------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Fucose            | 1.7  | 1.5  | 1.6  | 2.0  | 1.7  | 1.5  | 1.8  | 2.0  | 1.8  | 1.8  | 1.7  | 1.6  | 1.6  | 1.9  |
| Rhamnose          | 1.5  | 1.4  | 1.8  | 1.7  | 1.4  | 1.5  | 1.6  | 1.7  | 1.4  | 1.6  | 1.8  | 1.7  | 1.6  | 1.7  |
| Arabinose         | 16.8 | 19.3 | 18.4 | 17.0 | 17.1 | 15.6 | 18.5 | 18.9 | 17.7 | 19.3 | 17.8 | 17.4 | 16.5 | 16.7 |
| Galactose         | 8.7  | 10.9 | 9.7  | 7.2  | 12.3 | 14.3 | 9.0  | 10.2 | 12.0 | 9.6  | 8.2  | 16.4 | 14.7 | 7.0  |
| Glucose           | 38.1 | 36.2 | 38.2 | 43.3 | 37.5 | 36.4 | 37.8 | 35.1 | 36.8 | 38.0 | 38.9 | 34.4 | 36.3 | 39.6 |
| Xylose            | 10.6 | 9.6  | 10.2 | 12.4 | 10.4 | 10.0 | 11.8 | 11.5 | 11.1 | 12.1 | 10.4 | 10.2 | 10.2 | 11.6 |
| Mannose           | 7.4  | 6.7  | 6.1  | 4.2  | 5.2  | 5.9  | 6.6  | 7.5  | 5.9  | 5.0  | 5.9  | 4.5  | 4.8  | 5.8  |
| Galacturonic acid | 15.2 | 14.5 | 14.0 | 12.3 | 14.4 | 14.7 | 13.0 | 13.1 | 13.3 | 12.5 | 15.3 | 13.7 | 14.2 | 15.7 |
| Glucuronic acid   | tr   |
| After storage     |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| Fucose            | 2.3  | 2.0  | 2.5  |      | 2.6  |      | 2.2  |      |      | 1.9  | 2.7  | 2.3  |      |      |
| Rhamnose          | 1.4  | 1.3  | 1.6  |      | 1.2  |      | 1.5  |      |      | 1.3  | 2.6  | 2.4  |      |      |
| Arabinose         | 11.3 | 16.0 | 11.4 |      | 10.4 |      | 10.5 |      |      | 16.0 | 11.1 | 12.5 |      |      |
| Galactose         | 7.4  | 8.6  | 7.9  |      | 8.7  |      | 7.2  |      |      | 7.7  | 8.1  | 12.6 |      |      |
| Glucose           | 41.1 | 36.9 | 41.0 |      | 41.4 |      | 42.6 |      |      | 38.8 | 45.1 | 41.2 |      |      |
| Xylose            | 10.3 | 9.8  | 11.1 |      | 10.7 |      | 11.4 |      |      | 10.7 | 13.9 | 13.8 |      |      |
| Mannose           | 5.6  | 6.0  | 6.2  |      | 5.7  |      | 5.0  |      |      | 5.3  | 4.8  | 3.8  |      |      |
| Galacturonic acid | 20.4 | 19.9 | 18.3 |      | 19.7 |      | 19.5 |      |      | 18.2 | 11.6 | 11.4 |      |      |
| Glucuronic acid   | tr   | tr   | tr   |      | tr   |      | tr   |      |      | tr   | tr   | tr   |      |      |

**Supplementary Table 2:** Monosaccharide composition (mol%) of the non-starch polysaccharides of different apple cultivars before and after storage. The monosaccharide composition was determined by high performance anion exchange chromatography after H<sub>2</sub>SO<sub>4</sub> hydrolysis.

All analyses were performed in duplicate (technical replicates); relative half range uncertainties were mostly < 10 %. A = Galiwa, B = Pinova Evelina, C = Elstar v. d. Zalm, D = Ladina, E = Red Topaz, F = PRI 037, G = Gemini, H = Zari, I = PRI 010, J = Crimson Crisp, K = Isaaq, L = Allurel, M = Natyra, N = Lubera, tr = traces.

|                   | Galacturonic acid | R/2 |
|-------------------|-------------------|-----|
|                   | content           |     |
| Galiwa            | 23.2              | 0.5 |
|                   | 29.6              | 0.8 |
| Pinova Evelina    | 25.6              | 1.1 |
|                   | 32.1              | 1.4 |
| Elstar v. d. Zalm | 24.1              | 0.2 |
|                   | 30.4              | 0.9 |
| Ladina            | 22.2              | 0.1 |
|                   | -                 | -   |
| Red Topaz         | 26.8              | 0.5 |
|                   | 32.5              | 1.1 |
| PRI 037           | 21.7              | 0.5 |
|                   | -                 | -   |
| Gemini            | 26.6              | 0.1 |
|                   | 30.1              | 0.6 |
| Zari              | 25.5              | 1.5 |
|                   | -                 | -   |
| PRI 010           | 24.7              | 0.1 |
|                   | -                 | -   |
| Crimson Crisp     | 27.9              | 0.4 |
|                   | 28.2              | 0.7 |
| Isaaq             | 28.1              | 0.0 |
|                   | 28.8              | 0.6 |
| Allurel           | 26.1              | 0.8 |
|                   | 20.0              | 0.2 |
| Natyra            | 22.8              | 0.7 |
|                   | -                 | -   |
| Lubera            | 23.4              | 0.4 |
|                   | -                 | -   |

**Supplementary Table 3:** Galacturonic acid contents (g/100 g dry matter) of the non-starch polysaccharides of different apple cultivars before (upper line) and after storage (lower line).

All analyses were performed in duplicate (technical replicates); relative half range uncertainties were mostly < 5 %.

**Supplementary Table 4:** Monosaccharide composition (mol%) of the non-starch polysaccharides of different apple cultivars before and after storage. The monosaccharide composition was determined by high performance anion exchange chromatography after methanolysis and trifluoroacetic acid hydrolysis.

|                   | A    | В    | С    | D    | Ε    | F    | G    | Η    | Ι    | J    | K    | L    | Μ    | Ν    |
|-------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Fucose            | 2.6  | 2.1  | 2.3  | 2.8  | 2.3  | 2.0  | 2.4  | 2.5  | 2.6  | 2.5  | 2.2  | 1.9  | 1.9  | 2.7  |
| Rhamnose          | 4.2  | 3.6  | 4.2  | 4.1  | 3.5  | 3.6  | 4.0  | 4.2  | 3.5  | 4.4  | 4.5  | 3.6  | 3.6  | 4.3  |
| Arabinose         | 32.4 | 34.1 | 33.3 | 30.3 | 31.4 | 28.9 | 32.7 | 32.3 | 30.2 | 31.3 | 34.0 | 28.7 | 28.1 | 32.5 |
| Galactose         | 15.8 | 20.4 | 17.9 | 12.8 | 22.7 | 24.8 | 15.8 | 17.2 | 21.0 | 16.2 | 14.7 | 26.1 | 24.8 | 12.6 |
| Glucose           | 4.4  | 4.1  | 3.8  | 8.0  | 4.5  | 3.4  | 4.3  | 3.4  | 3.6  | 3.6  | 3.5  | 3.5  | 4.4  | 3.7  |
| Xylose            | 14.7 | 13.7 | 14.1 | 16.6 | 13.4 | 13.0 | 15.4 | 14.7 | 14.0 | 14.3 | 14.7 | 13.4 | 13.6 | 16.6 |
| Mannose           | 5.3  | 4.7  | 6.4  | 3.9  | 4.3  | 4.9  | 4.7  | 5.1  | 4.7  | 4.9  | 4.1  | 3.8  | 3.8  | 4.3  |
| Galacturonic acid | 19.9 | 16.6 | 17.2 | 21.0 | 17.2 | 18.6 | 20.8 | 20.5 | 19.9 | 23.0 | 22.4 | 18.6 | 19.3 | 22.6 |
| Glucuronic acid   | 1.1  | 0.6  | 0.7  | 0.7  | 0.8  | 0.7  | tr   | tr   | 0.7  | tr   | tr   | 0.7  | 0.4  | 0.7  |
| After storage     |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| Fucose            | 3.9  | 3.2  | 3.5  |      | 4.0  |      | 3.7  |      |      | 3.6  | 4.1  | 3.9  |      |      |
| Rhamnose          | 6.3  | 5.1  | 6.6  |      | 5.6  |      | 5.8  |      |      | 5.2  | 6.9  | 6.0  |      |      |
| Arabinose         | 24.9 | 31.5 | 24.4 |      | 22.2 |      | 22.4 |      |      | 30.8 | 20.2 | 21.1 |      |      |
| Galactose         | 14.7 | 16.1 | 15.5 |      | 16.4 |      | 13.7 |      |      | 14.4 | 14.3 | 21.6 |      |      |
| Glucose           | 5.9  | 5.5  | 5.6  |      | 6.4  |      | 5.2  |      |      | 4.8  | 5.1  | 4.7  |      |      |
| Xylose            | 18.7 | 16.5 | 18.2 |      | 19.3 |      | 20.7 |      |      | 18.0 | 19.4 | 18.3 |      |      |
| Mannose           | 3.9  | 3.5  | 4.3  |      | 3.9  |      | 3.5  |      |      | 3.1  | 3.6  | 2.7  |      |      |
| Galacturonic acid | 21.5 | 18.6 | 21.7 |      | 22.3 |      | 24.3 |      |      | 19.6 | 25.9 | 21.2 |      |      |
| Glucuronic acid   | tr   | tr   | tr   |      | tr   |      | 0.8  |      |      | 0.7  | 0.8  | 0.8  |      |      |

All analyses were performed in duplicate (technical replicates); relative half range uncertainties were mostly < 10 %. A = Galiwa, B = Pinova Evelina, C = Elstar v. d. Zalm, D = Ladina, E = Red Topaz, F = PRI 037, G = Gemini, H = Zari, I = PRI 010, J = Crimson Crisp, K = Isaaq, L = Allurel, M = Natyra, N = Lubera, tr = traces.