Appendix: proofs of Propositions

Proof of Proposition 1

It is immediately implied by equation (4).

Proof of Proposition 2

Vile) = —f I (a*(m,e) — x)* dGe(m | x) — %

2 2

p € e

= - {1 0 — - dG, ) — —
/:u (E—i—p( x) + E—I—p(m .-r]) Ge(m|x) 5

Since m |z ~ N (:L‘, l) (see equation (3)), the expected payoff can then be rewritten as:

Vi(e) = —I l(P+p) (6 — )%+ {P+p)2(3 )E[m—:-':]-{—(EiP)EE[m—I]ﬂ]—g
y (e+p( e}ﬂ)_e_{

(e +p)? 2
Taking derivatives, we get:
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by continuity there is at least one interior maximum e* (> 0) such that:
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Suppose that (z —6)% > 3 . It means that

We next prove that the maximum is unique. Taking derivatives once again:
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Substituting e¢* we therefore get:
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So, if there are two values €5 > e such that Whm = () and % = (, then:
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In words, the second derivative at e5 must be smaller than the second derivative at ef.

However, % > () means that e] must be a local maximum, that is, %‘Q < (0,
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which in turn implies that e cannot be a local minimum and therefore that the interior
equilibrium €* is unique. Overall, for all (x — #)* > ﬁ, the optimal level of attention is
uniquely defined and given by the first-order condition, equation (6).

Consider now the case (z — 0)? = z—lp The first-order condition becomes:
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Thia equation has two aﬂlutinns el” = 0 and 5" = V3 — p. Tt is easy to check that
dp V(o) <0 for all e > e5". There are two cases:

o If ['/3 — p < 0, then the only solution to the problem is ei* = 0 = lim, gy, 1 €] and
ap

the function V() is always decreasing in e. For all (z —#)? < 2_p= mm, < (). Hence the
solution of the problem is the corner solution ¢* = 0 for all (x — 0)* < .
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o If /3 —p > 0, the interior solution of the problem is e3* = = lim, _ 02— % e}. Notice that
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Ve(e) is decreasing in (z — 0)? for all e. Also, is increasing in (x — #)? for all e.

Given these properties, for all (z —0)? <
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the solution é; to —5—| = 0. Last notice that:
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Furthermore, lim,_g2_,0 Vz(0) = 0 and limg,_g2_,5 Vz(é2) < 0. Therefore, there
exists a cutoff £* (< %] such that the solution is é; = 0 for all (x — #)? < k*. The cutoff
k* is solution of V;(0) = V;(é2), that is it solves
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where €9 solves
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To sum up:
- If IY3 —p < 0, there exist two values z = 6 — ﬁ and T = 0+ ﬁ such that the optimal
attention e* solves equation (6) for all z & [z, 7], that is, whenever (z — #)* > %} and the
optimal attention is e* = 0 for all z € [z, ], that is, whenever (z — 0)? < ﬁ+



-If 113 —p > 0, there exist two values z = 0 — Vk* and T = 6+ vk* such that the optimal
attention e* solves equation (6) for all z ¢ [z, 7], that is, whenever (x — #)? > k* and the
optimal attention is e* = 0 for all z € [z, 7], that is, whenever (z — #)? < k*.

For the case where optimal attention is strictly positive (and given by (6)), a straight-
forward differentiation of the first-order condition yields:
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which means that in the interior equilibrium, attention increases as & moves farther away
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from @. This is reflected in Figure 2a.

Finally, from equation (5), it is immediate that for all z > T, as = increases, €* increases
so Ela™ | z] is closer to x. Similarly, for all < T, as x decreases, e* increases so Ela* | z]
is again closer to x. This is reflected in Figure 2b.

Proof of Proposition 3

Differentiation of the first-order condition in the interior optimum (6) vields:
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Proof of Proposition 4
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Applying the envelope theorem, we can differentiate EV (the expected payoff before the
realization of the event) with respect to p. We obtain:
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Proof of claims in Section 3.2

>0

Working memory dysfunction. Differentiation of the first-order condition in the interior
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optimum and given a cost of attention c(e) = a5 yields:
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Episodic memory dysfunction. For an encoding probability g, the expected payoff
becomes:
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Differentiating again the first-order condition in the interior optimum yields:
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