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Supplementary materials
[bookmark: OLE_LINK57][bookmark: OLE_LINK58][bookmark: OLE_LINK121][bookmark: _GoBack][bookmark: OLE_LINK122][bookmark: OLE_LINK123][bookmark: OLE_LINK11][bookmark: OLE_LINK18][bookmark: OLE_LINK124][bookmark: OLE_LINK125]Multi-compartment model. The dendritic morphology of hippocampal CA1 pyramidal neurons varies across species and cortical regions, but almost all such neurons have numerous short basal dendrites and one long apical dendrite bifurcating into oblique dendritic branches(Megías et al., 2001; Altemus et al., 2005). Due to differences between morphological structures, such as the distance from the cell body, the spine density, and the shaft diameter, dendritic integration shows significant location dependence(Magee, 2000; Williams and Stuart, 2003). That is, the same signals received by synapses can have different effects at the AIS. To examine the relations between the number of synaptic inputs and metabolic energy during dendritic integration and between the frequency of action potentials and metabolic energy during dendritic integration, we construct a multi-compartment model based on hippocampal CA1 pyramidal neurons, in which dendrites with similar morphological structures are represented by a single compartment (Fig. 6). Thirteen compartment models in a single pyramidal neuron are established, including the distal tuft, proximal tuft, prolonged trunk, distal trunk, medial trunk, proximal trunk, trunk branches, proximal basal dendrites, distal basal dendrites, cell body, and axonal initial segment. The trunk branches are represented by three compartments, namely, the branches linked to the distal trunk, medial trunk, and proximal trunk. The structural parameters of these compartments are listed in Table 1.
[bookmark: OLE_LINK19][bookmark: OLE_LINK20][bookmark: OLE_LINK126][bookmark: OLE_LINK127]The membrane of pyramidal neurons contains large quantities of channel proteins, which are the structural basis of transmembrane ion movement. The kinetics of different types of ion channels vary widely. Ion flux depends heavily on factors such as the kinetics and distribution of ion channels and the dendritic morphology(Reyes, 2001; Major et al., 2013). Here, only seven major types of ion channels are considered, as follows(Reyes, 2001; Keren et al., 2005): a hyperpolarization-activated cation current channel (H), a Na+ channel (Na), a fast inactivating K+ channel (Kf), a slow inactivating K+ channel (Ks), a small-conductance Ca2+-gated K+ channel (Ksk), a large-conductance Ca2+-gated K+ channel (Kbk), and a Ca2+ channel (Ca). The channel activation and inactivation kinetics are described in Table 2.
[image: ]
Figure 1 | Structural schematic of pyramidal neurons. a, The morphological structures of pyramidal neurons in the hippocampal CA1 cortical areas(Spruston, 2008). b, The dendrites of pyramidal neurons are divided into nine parts: the distal tuft, proximal tuft, prolonged trunk, distal trunk, medial trunk, proximal trunk, trunk branches, proximal basal dendrites, and distal basal dendrites, which are depicted in unique colours. The trunk branches are enclosed in dashed ellipses, and the other structures are placed in eight different coloured bands. Detailed data on the dendritic branches are given in Table 1. c, Each compartment is represented as a circle of the same colour used in a. d, Dendrites actually resemble hollow pipelines, and many channel proteins and receptors are distributed on the wall, such as Na+ channels, K+ channels, NMDA receptors, and AMPA receptors. Higher ion concentrations are represented by deeper colours of the neuron membrane. The membrane potential of the orange-red region is higher than that of the yellow region.

The mathematical descriptions of each compartment model are modified from the traditional Hodgkin–Huxley model (Dayan and Abbott, 2001) as follows

	 	
where Vi is the membrane potential of the i-th compartment in the model. The ion current Iions, coupling current Inei, and input currents Isys from synapses all contribute to the rise in the membrane potential and trigger action potentials. The ion current is generated by various ions passing through the channels mentioned above. The coupling current is the sum of the currents between the i-th compartment and its adjacent compartments, which are computed as follows

	 	

	 	

	 	

	 	


[bookmark: OLE_LINK128][bookmark: OLE_LINK129]where Ni is the number of compartments adjoining the i-th compartment. The coupling conductance(Pinsky and Rinzel, 1995; Yi et al., 2014) is gc = 10 pS/μm2. The conductance of the ion channels is as follows (in pS/μm2): dendrites(Schaefer et al., 2003; Keren et al., 2005; Kispersky et al., 2012): gNa = 81, gKf = 28, gKs = 6.13, gKsk = 0.65, gKbk = 1.85, and gCa = 1.5; soma: gNa = 284, gKf = 294, gKs = 220, gKsk = 3.05, gKbk = 1.93, and gCa = 3. The kinetic equations of kinetic variables such as m, n, and h, are defined in the Table 2. The equilibrium potentials (in mV) are EH = -30, ENa = 60, EK = -80, EKf = -80, EKs = -80, EKsk = -80, EKbk = -80, and ECa = 130. Notably, the distribution of hyperpolarization-activated cation current channels gh is not uniform and increases exponentially with distance(Kole et al., 2006). Depending on the distance from the soma, the gh of compartments varies from 2.5 to 100 pS/μm2. The membrane capacitance Cm is set to 0.009 pF/μm2. The values gex and ginh are the conductance of the excitatory and inhibitory synapses, and their reversal potentials (in mV) are Eex = 0 and Einh = -80, respectively(Guillamon et al., 2006). When an action potential arrives at the synapses, gex and ginh increase by Δgex and Δginh, respectively. Otherwise, both parameters obey Equation (17), in which  and  are set to 5 and 10, respectively. Here, Δgex and Δginh are set to 3500 and 1500 pS/synapse, respectively(Rudolph et al., 2004). The multi-compartment model is implemented in C/C++, in which the Runge-Kutta numerical method is used. The code is available upon request.

Table 1 Channel activation and inactivation kinetics(Keren et al., 2005; Keren et al., 2009; Almog and Korngreen, 2014)
	Channel type
	Equation
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