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1 SUPPLEMENTARY VIDEO

Oxygen transport simulation in CN 1. HS is shown by the RBC color and PO2 by the cutting plane color.
The transparent tubes show the capillary lumen.

2 SUPPLEMENTARY METHODS

Supplementary Methods 1

Extension of the oxygen transport model to CNs. The oxygen transport model with moving RBCs
(Lücker et al., 2014) was extended to capillary networks to enable the study of COSH in realistic geometries.
The knowledge of the position and the velocity of individual RBCs is required by our algorithm. RBC
trajectories through the capillary networks were obtained using the discrete RBC transport model by
Schmid et al. (2017) that takes into account the Fåhraeus and Fåhraeus-Lindqvist effects, as well as phase
separation at divergent bifurcations. The blood flow through the CNs was reconstructed based on sparse
measurements of RBC velocities using the procedure described in the Supplementary Methods 2.

Since the time steps in the oxygen transport model are smaller than in the RBC transport model (Schmid
et al., 2017), the computed RBC positions were linearly interpolated. RBCs were modeled as rigid cylinders
with the axis tangent to the capillary centerline. The RBC meshes were obtained from a Cartesian mesh by
removing all cells that were not contained in a cylinder with radius rc and length Lrbc. Then, the mesh was
scaled to have exactly the prescribed RBC volume Vrbc. The use of smooth cylindrical RBC meshes was
found to yield the same results as with Cartesian-based meshes.

Since capillaries may have different cross sections, the RBC diameter was set to 80% of the lumen
diameter. For capillary diameters between 4 and 8 µm, this corresponds to an endothelial surface layer width
between 0.4 and 0.8 µm, which falls within the range of measured values (Pries et al., 1990). The discrete
RBC transport model (Schmid et al., 2017) enforces that RBC centers are separated by a minimal distance
Lrbc = Vrbc/(πr

2
c ), so the RBCs cannot overlap unless they are separated by a kink or a bifurcation.
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Lücker et al. Supplementary Material

This model solves the same governing equations for the oxygen partial pressure P and the HS S as in
Lücker et al. (2014). The oxygen transport equation is given by

∂αP

∂t
+ v · ∇(αP ) = ∇ · (Dα∇P ) + C0f(P, S)−M(P ), (S1)

where v is the blood velocity and C0 = NHbVmol,O2
is the product of the heme concentration and the

molar volume of oxygen. In RBCs, the evolution of HS follows

∂S

∂t
+ v · ∇S = ∇ · (DHb∇S)− f(P, S), (S2)

where DHb is the diffusion coefficient of hemoglobin in RBCs.

Eq. (S1) was solved in a rectangular box that contains multiple capillaries and oxygen-consuming tissue.
Eq. (S2) was solved in all moving RBCs that overlap with the box. The computational model (Lücker
et al., 2014) allows for different diffusion and solubility coefficients in the RBC, plasma, endothelium
and tissue. In capillary networks, this is done using an approach based on volume fractions, since the
generation of a mesh that conforms with tortuous, branching capillaries would be very challenging. Instead,
a Cartesian mesh was used to discretize the fixed domain. For each capillary, a tortuous cylinder following
the centerline was constructed (Supplementary Figure S6). The cylinder was composed of an inner region
for the lumen and an outer annulus for the endothelium. For each grid cell in the fixed mesh, the lumen
and endothelium volume fractions γp and γw were obtained by computing its intersection volume with the
reconstructed cylinder. At branchings between capillaries, the reconstructed cylinders may overlap. In this
case, the contributions of each cylinder were added and the volume fractions were clamped so that their
sum is at most one. The tissue volume fraction was then obtained by γt = 1− γp − γw. At the beginning
of each simulation, the diffusion and solubility coefficients for each grid cell without RBC influence were
obtained as the weighted harmonic average of the respective coefficients in each region, where the weights
are γp, γw and γt. Subsequently, at each time step, the obtained coefficient was corrected in grid cells that
were overlapping with an RBC using the coefficient value in RBCs and the RBC volume fraction γc.

The velocity field in the blood vessels is required in Eq. (S1). To obtain it, for each vessel between nodes
i and j, the RBC velocity vrbc,ij from the discrete RBC transport model was mapped to the matching
capillary. This was done by tagging each grid cell with γp > 0 with its corresponding vessel index and
assigning to it the velocity vector with magnitude vrbc,ij and direction tangent to the vessel centerline at the
nearest point to the cell center. The resulting velocity field umapped was generally not discretely divergence
free because of the tortuosity of the vessels and the branchings, which would result in a violation of mass
conservation. Therefore, the velocity field was corrected based on the Helmholtz-Hodge decomposition
theorem which states that a smooth vector field u can be decomposed as the sum of a divergence-free
velocity field v and an irrotational component as u = v+∇φ. The velocity field v is obtained by applying
the divergence operator, which results in the correction scheme

∇2φ = ∇ · u, (S3)

v = u−∇φ. (S4)

Eq. (S3) was solved on the submesh of the fixed mesh that is composed of all grid cells with γp > 0.
Before solving for φ, the mapped velocity field umapped was corrected at the boundary of the submesh
so that the influx exactly matches the outflux on each connected component, which is required to fulfill
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mass conservation. Finally, a homogeneous Neumann boundary condition was used for φ. Eq. (S3) was
discretized using the central scheme and solved using the preconjugate gradient method.

Supplementary Methods 2

Flow reconstruction algorithm based on sparse measurements. Given a sparse set of RBC velocity
measurements in a reconstructed CN, a matching blood flow field needs to be reconstructed for oxygen
transport simulations to be run. In the networks used here, most boundary vessels are capillaries where the
pressure is unknown. Therefore, the flow reconstruction method introduced by Gagnon et al. (2015) cannot
be directly employed. Since RBC velocity measurements from longitudinal line scans are restricted to ves-
sels in the microscope focal plane, the resulting flow reconstruction problem is generally underdetermined.
To solve this issue, we introduce a cost function based on energy minimization and determine a pressure
solution using optimization under constraints. The resulting pressure boundary conditions can subsequently
be used in the discrete RBC transport model (Schmid et al., 2017) which provides RBC trajectories to our
oxygen transport model with moving RBCs.

Consider a graph representation of a CN with a set of nv vertices V and edges (i, j) ∈ E that represent
blood vessels with associated lengths Lij and diameters dij . The flow qij through a vessel (i, j) and the
pressure difference between nodes i and j are related by the hydraulic resistance as

qij =
pi − pj
Re
ij

. (S5)

The effective resistance Re
ij is related to the resistance obtained by Poiseuille’s law by the in-vitro apparent

viscosity µvitro,ij as

Re
ij = µvitro,ij

128µp

πd4ij
Lij , (S6)

where µp is the plasma viscosity and was set to 1.2mPa s (Késmárky et al., 2008). The expression for
µvitro,ij is given in Pries and Secomb (2005) and depends on the vessel diameter and hematocrit. The
determination of hematocrit is discussed below and its values can be assumed to be given for now.

The flow balance at each internal node j is enforced by∑
i|(i,j)∈E

pi − pj
Re
ij

= 0. (S7)

Measurements of the RBC velocity vmeas
rbc,ij provide additional constraints. The corresponding flow is

obtained by taking the Fåhraeus effect into account as follows:

qmeas
ij = vmeas

rbc,ij

πd2ij
4

HT,ij

HD,ij
, (S8)

where HT and HD are the tube and discharge hematocrit, respectively. The discharge hematocrit was
computed from the tube hematocrit using empirical relations (Pries et al., 1990). Since some combinations
of measurements can lead to a violation of flow balance, the vessels with associated measurements need to
be split in two categories. For instance, if all edges that are adjacent to a certain vertex have prescribed
RBC velocity values, the flows obtained with Eq. (S8) will not sum to zero in general. Denote by Ecomp the
set of edges with compatible measurements that do not cause a violation of flow balance. A measurement
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between nodes i and j yields the equation

pi − pj
Re
ij

= qmeas
ij for (i, j) ∈ Ecomp. (S9)

The treatment of incompatible measurements is discussed below.

The unknowns in the flow reconstruction problem are the pressure values at the nv vertices in the network.
Vertices can be split into nv,int internal nodes and nv,b boundary nodes. Flow conservation yields an
equation for each internal node and each compatible measurement adds one more equation (nmeas,comp in
total). Therefore, if nmeas,comp < nv − nv,int = nv,b, the problem is underdetermined, which occurred in
both CNs employed here.

The following cost function is introduced to solve the underdetermination issue:

J(p) = ωpowJpow(p) + ωv,avgJv,avg(p) + ωmeasJmeas(p), (S10)

where p is the vector of pressure values at the nodes and the ω-coefficients have implied units. The first
term represents the hydraulic power through the CN, namely

Jpow(p) =
∑

(i,j)∈E

(pi − pj)2

Re
ij

. (S11)

This ensures that the pressure solution uses low hydraulic power, which expresses energy minimization.
However, the use of this single term may cause vessels away from measurements to have zero or very low
flow. To compensate for this effect, an additional term is introduced to guarantee an average RBC velocity
in accordance with experimental data:

Jv,avg(p) = (vrbc,avg(p)− vrbc,ref)2, (S12)

where vrbc,avg(p) is the length-weighted RBC velocity in the network for the pressure values p and vrbc,ref
is a reference RBC velocity that can be chosen. The combination of the first two terms in Eq. (S10) with
appropriate weights ensures that the obtained RBC velocities are neither too high nor too low (Figure 2).

The last term in Eq. (S10) addresses RBC velocity measurements that lead to a violation of flow balance.
Let Einc be the set of edges with measurements that are incompatible with flow balance. On these edges,
the squared deviation between measurements and reconstructed flow is minimized using

Jmeas(p) =
∑

(i,j)∈Einc

(
qmeas
ij −

pi − pj
Re
ij

)2

. (S13)

The weights in Eq. (S10) were chosen to provide a satisfactory balance between the terms and set to
ωpow = 1, ωv,avg = 200 and ωv,avg = 50 (there are only two actual degrees of freedom since the cost
function can be arbitrarily rescaled by a multiplicative constant). The reference velocity vrbc,ref was set to
1.5mm/s. Due to minimization of hydraulic power, the mean RBC velocities obtained with this method
were close to 1.0mm/s (Table 1). This value can be adapted to obtain average RBC velocity values that
match experimental observations. The minimization of J(p) under the constraints given by Eq (S7) and
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(S9) was performed using the implementation of sequential least squares programming in the scientific
computing library SciPy (Jones et al., 2001–).

There remains to discuss the distribution of hematocrit in the CNs. An inflow tube hematocrit value HT,in

of 0.25 was chosen as an initial condition. However, due to phase separation, the hematocrit distribution in
CNs is not constant in general. When using the discrete RBC tracking model (Schmid et al., 2017) with
the boundary pressure values pb obtained from the minimization problem described above, the resulting
steady-state hematocrit may differ from the initial hematocrit value. In turn, this affects the effective
resistances Re

ij (Eq. (S6)) and the agreement between the simulated flow and the measurements. Therefore,
an iterative procedure is used where the steady-state hematocrit from the RBC transport model is fed
back to the optimization procedure, which yields updated effective resistances. The flow reconstruction
algorithm then provides a new pressure solution which is used as a boundary condition for the RBC
transport model. The procedure is repeated until the resistances vary by less than 1%. This method is
summarized in Algorithm 1 and was found to converge in both CNs. At each iteration, the RBC transport
model was run for 1 s of simulated time and the RBC positions from the previous iteration were used as an
initial condition.

Algorithm 1: Flow reconstruction based on sparse measurements

1: compute Re,0
ij using HT,in

2: εrel ←∞
3: k ← 0
4: while εrel < rel tol do
5: k ← k + 1
6: find p by minimizing J(p) (S10) under the constraints (S7), (S9)
7: run a discrete RBC transport simulation with pb and HT,in at the

boundary nodes over a given time interval
8: compute Re,k

ij from the time-averaged tube hematocrit

9: εrel ← max(i,j)∈E

∣∣∣∣ Re,k
ij

Re,k−1
ij

− 1

∣∣∣∣
10: end while

REFERENCES
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SUPPLEMENTARY FIGURES
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Figure S1. Distribution of the HS Sv at the distal end of capillary paths in CN 2. Left: constant inflow
value; right: random inflow value. (A, E) computational model with moving RBCs; (B, F) differential
equation model with functional tissue radii; (C, G) differential equation model with geometric tissue radii;
(D, H) box plot with whiskers for the 5th and 95th percentile. The values from the differential equation
model are weighted by the RBC flow in the distal capillaries. Error bars above the histograms: mean ± SD.
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A B

C D

Figure S2. HS along individual RBC paths as a function of transit times (A, C) and transit path length (B,
D). The values are shown for simulations in CN 2 with constant (A, B) and random (C, D) inflow values.
Circles: value in RBCs upon leaving the computational domain. Error bars: mean ± SD. The horizontal
error bars pertain to entire RBC paths through the CN and the vertical error bars to outflow HS.
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A B

C D

E F

Figure S3. HS changes across CNs as a function of the random inflow saturation Sa. The respective
Pearson’s correlation coefficients r are given. (A) HS drop across CN 1 (r = 0.70); (B) HS drop across
CN 2 (r = 0.81); (C) HS drop across CN 1 divided by the transit time (r = 0.53); (D) HS drop across CN
2 divided by the transit time (r = 0.70); (E) HS drop across CN 1 divided by the path length (r = 0.53);
(F) HS drop across CN 2 divided by the path length (r = 0.54).
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A B

C D

E

Figure S4. Tissue radii in the simulations with constant inflow HS. Triangles: functional tissue radii;
circles: geometric tissue radii. Blue symbols: CN 1; purple symbols: CN 2. The respective Pearson’s
correlation coefficients are given. (A) RBC flow (r = 0.60); (B) RBC velocity (r = 0.47); (C) tube
hematocrit (r = 0.45); (D) RBC transit time until entering the capillary (r = −0.44); (E) RBC path length
until entering the capillary (r = −0.33).
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Figure S5. Profiles of HS in three selected inflow vessels in CN 1. (A, C, E) See legend of Figure 5. (B,
D, F) Drop in HS for individual RBCs as a function of the time difference to the previous RBC that passed
through the vessel; solid line: linear regression.
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Figure S6. Meshes used in the model extension to capillary networks. The parallelepiped is a clipped part
of the computational domain and the colors show values of the plasma volume fraction γp (red: 1; blue: 0).
A fraction of the submesh for the lumen used by the velocity correction scheme is also shown.
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