
Multidimensional Scaling

Let R be an n × n correlation matrix with elements rij, subsequently converted into a dis-
similarity matrix ∆ of the same dimension with elements δij. Correlations can be converted
into distances using δij =

√
1− rij. MDS scales the n objects into a low-dimensional space

of dimension p. That is, it aims for find a configuration matrix X of dimension n× p:

dij(X) =

√√√√ p∑
s=1

(xis − xjs)2,

with dij(X) as the fitted distances. This can be achieved by minimizing the stress target
function:

σ(X) =
∑
i<j

(d̂ij − dij(X))2 → min!

It uses a transformed version of the input dissimilarities d̂ij = f(δij). Popular transformation
functions f(·) used in MDS are a linear transformation (interval MDS, or, if the intercept
is omitted, ratio MDS ), or a monotone step function (ordinal MDS, sometimes also called
nonmetric MDS ). The resulting transformed dissimilarities d̂ij are called disparities or d-
hats.

Various normalizations of the raw stress σ(X) have been proposed in the literature. The
most popular one is the stress-1 :

σ1(X) =

√
σ(X)∑
i<j d̂

2
ij

.

Having two MDS solutions with configuration matrices X and Y both of dimension n×p,
they can be aligned using Procrustes. This procedure, named after Poseidon’s son in Greek
mythology (“Procrustes, the stretcher”), removes statistically “meaningless” differences (i.e.,
they do not change the fit of an MDS solution) between the two MDS configurations. Cor-
responding transformations are rotation, dilation, and translation. The steps involved in
Procrustes are the following. Let X be the target configuration, Y the testee configuration
to be transformed, and Z be a centering matrix (Z = I− n−111′):

1. Compute C = X′ZY.

2. SVD on C: C = PΦQ′.

• rotation matrix: T = QP′,

• dilation factor: s = tr(X′ZYT)/tr(Y′ZY),

• translation vector t = n−1(X− sYT′)1.

3. Final solution: Ŷ = sYT + 1t′.

The resulting Procrustes configuration Ŷ can be plotted into the same MDS space as X,
subject to visual inspection of configuration differences.
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Principal Component Analysis

Principal component analysis (PCA) is a procedure often used for dimension reduction that
converts a set of observations of possibly correlated variables into a set of new orthogonal
variables, called principal components. PCA is defined such that the first extracted prin-
cipal component contains the largest amount of variance, and each subsequent principal
component contains less variance than the last. PCA is especially useful when much of the
variance in the data can be captured in just a few principal components, aiding interpretation
or visualization.

Let X be the column-centered version of the n×m data matrix, divided by
√
n− 1. An

SVD decomposes X into the following three parts:

X = UDV′.

U is an n×m matrix containing the left singular vectors, V is an m×m matrix containing
the right singular vectors, and D is a m×m diagonal matrix with the singular values on the
diagonal.

The singular values reflect the standard deviations of the principal components, from
which we can compute the proportion of variance explained in p dimensions. The matrix U
contains the loadings, and the principal component scores can be obtained by UD

√
n− 1.

Note that a PCA can also be computed via an eigenvalue decomposition.

Eigenmodels

The data to be considered in an eigenmodel consist of an n × n adjacency matrix Y (e.g.,
a correlation matrix), with elements Yij. In the eigenmodel, Yij is defined as a function of
latent variables ui and uj and, optionally, a regression model with adjacency predictor vector
xij. The number of dimensions p needs to be fixed a priori.

Yij = f(β′xij + uiΛuj).

They eigenmodel approach uses Markov chain Monte Carlo (MCMC) to solve this problem.
Without considering predictors, as in our example, we get the matrix Λ̂ of dimension p× p
which gives the relative importance of each dimension, and the matrix Û of dimension n×p.
In this matrix, each node i gets a row vector ûi = (ûi1, . . . , ûip) containing the unobserved
node characteristics. Nodes with similar characteristics will get similar û-vectors.

There is one more tweak to be applied on this solution. The vectors ûi are not orthogo-
nal, a property which is important for interpretation and plotting. Applying an eigenvalue
decomposition on the fitted matrix ÛΛ̂Û′ does the trick. The resulting eigenvectors reflect
the coordinates in the p-dimensional space, and can be subject to plotting.
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