Optimal localist and distributed coding of spatiotemporal spike patterns through STDP and coincidence detection

Timothée Masquelier & Saeed Reza Kheradpisheh

Appendix

Graded weights

In this paper, we assumed unitary (or binary) synaptic weights: all connected afferents had the same synaptic weight¹. This constraint strongly simplified the analytical calculations. But could the SNR be even higher if we removed this constraint, and by how much? Intuitively, when one wants to detect a spike pattern that has just occurred, one should put strong weights on the synapses corresponding to the most recent pattern spikes, since these weights will increase V_{max} more than V_{noise} . Conversely, very old pattern spikes that fall outside the integration window (if any) should be associated to nil weights: any positive value would only increase V_{noise} , not V_{max} . But between those two extremes, it might be a good idea to use intermediate weight values.

To check this intuition, we used numerical optimizations using a simplified setup. We used a single pattern (P = 1), that was repeated in the absence of jitter (T = 0). We divided the pattern into n different periods $\Delta t_1, ... \Delta t_n$ (in reverse chronological order), each one corresponding to a different synaptic weight $w_1, ... w_n$ (see Figure 1 left for an example with n = 2). More specifically: the M_1 afferents that fire in the Δt_1 window are connected with weight w_1 . The M_2 afferents that fire in the Δt_1 one, are connected with weight w_2 . More generally, the M_i afferents that fire in the Δt_1 window, but not in the $\Delta t_1... \Delta t_{i-1}$ ones, are connected with weight w_i .

With this simple set up, the SNR can be computed analytically. For example, if n = 2 (Fig. 1 left), we have:

$$\langle M_1 \rangle = N(1 - e^{-f\Delta t_1}),\tag{1}$$

$$\langle M_2 \rangle = N(1 - e^{-f\Delta t_2})e^{-f\Delta t_1}.$$
(2)

The asymptotic steady regimes for the two time windows are:

$$\langle V_1^{\infty} \rangle = \tau f w_1 N, \tag{3}$$

$$\langle V_2^{\infty} \rangle = \tau f \left(w_2 N + \left(w_1 - w_2 \right) \left\langle M_1 \right\rangle \right).$$
(4)

Let's call V_i the potential at the end of window Δt_i , and $V_{n+1} = V_{\text{noise}}$. Then $V_{\text{max}} = V_1$ can be computed iteratively:

$$V_2 = (1 - e^{-\Delta t_2/\tau})(V_2^{\infty} - V_3), \tag{5}$$

$$V_1 = (1 - e^{-\Delta t_1/\tau})(V_1^{\infty} - V_2).$$
(6)

Furthermore [Burkitt, 2006],

$$V_{\text{noise}} = \tau f(w_1 M_1 + w_2 M_2), \tag{7}$$

and:

$$\sigma_{\text{noise}} = \sqrt{\tau f(w_1^2 M_1 + w_2^2 M_2)/2}.$$
(8)

So we have everything we need to compute the SNR.

Equations 1 - 8 can be generalized to n > 2:

$$\langle M_i \rangle = N(1 - e^{-f\Delta t_i})e^{-f\sum_{j=1}^{i-1}\Delta t_j},\tag{9}$$

$$\langle V_i^{\infty} \rangle = \tau f\left(w_i N + \sum_{j=1}^{i-1} (w_j - w_i) \left\langle M_j \right\rangle\right)$$
(10)

and $V_{\text{max}} = V_1$ can be computed iteratively from $V_{n+1} = V_{\text{noise}}$ using:

$$V_{i-1} = (1 - e^{-\Delta t_{i-1}/\tau})(V_{i-1}^{\infty} - V_i).$$
(11)

Furthermore [Burkitt, 2006],

$$V_{\text{noise}} = \tau f \sum w_i M_i, \tag{12}$$

¹Numerical simulations with STDP used graded weights during learning, but not after convergence.

and:

$$\sigma_{\text{noise}} = \sqrt{\tau f \sum w_i^2 M_i/2}.$$
(13)

So the SNR can be computed for any n, and, importantly, it is differentiable with respect to the w_i . We can thus use efficient numerical methods to optimize these weights. Since scaling the weights does not change the SNR, we imposed $w_1 = 1$. Figure 1 right gives an example with n = 70. Here the Δt_i were all equal to $5\tau/n$, and we optimized the corresponding w_i . We chose $\tau = 10$ ms, and f = 1, 5, and 10Hz. The gain w.r.t. binary weights for the SNR were modest: 10.5%, 9.6% and 8.9% respectively. As f tends towards 0, the optimal weights appears to converge towards $e^{t/\tau}$ (even if we could not prove it): the f = 1Hz curve (solid blue) is almost identical to $e^{t/\tau}$ (dashed red).

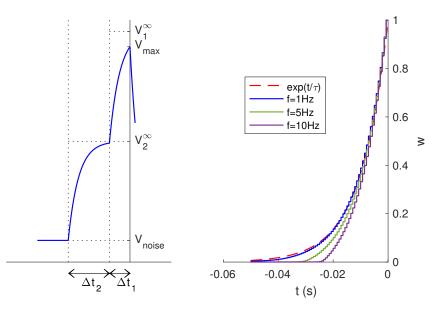


Fig. 1: Optimization with graded weights. (Left) Didactic example with n = 2 weight values: w_1 for all the afferents that fire in the Δt_1 window, and $w_2 < w_1$ for all the afferents that fire in the Δt_1 window but not in the Δt_1 one. V_1^{∞} and V_2^{∞} are the asymptotic potentials for the two periods. V_{max} can be computed from those two values (see text). (Right) Numerical optimization of the weights with n = 70. With small f, the optimal solution appears to be close to $e^{t/\tau}$.

References

Burkitt, A. N. (2006). A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input. Biological Cybernetics, 95(1):1–19.