

Supplementary Material

Structural influence on the dominance of virus-specific CD4 T cell epitopes in Zika virus infection

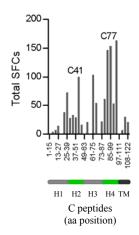
Maximilian Koblischke¹, Karin Stiasny¹, Stephan W. Aberle¹, Stefan Malafa¹, Georgios Tschouchnikas¹, Julia Schwaiger¹, Michael Kundi², Franz X. Heinz¹ and Judith H. Aberle^{1*}

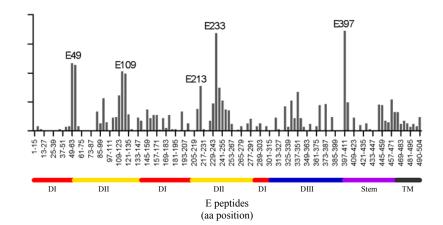
¹Center for Virology, Medical University of Vienna, ²Center for Public Health, Medical University of Vienna, Vienna, Austria.

*Correspondence: Dr. Judith Aberle: judith.aberle@meduniwien.ac.at

A

Zika virus C


Pool	I	II	III	IV	\mathbf{V}					
VI 1		2	3	4	5					
VII	6	7	8	9	10					
VIII	11	12	13	14	15					
IX	16	17	18	19	20					
X	21	22	23/26	24/27	25/28					


В

Zika virus E

Pool	I	II	III	IV	V	VI	VII	VIII	IX	X	XI
XII	1	2	3	4	5	6	7	8	9	10	11
XIII	12	13	14	15	16	17	18	19	20	21	22
XIV	23	24	25	26	27	28	29	30	31	32	33
XV	34	35	36	37	38	39	40	41	42	43	44
XVI	45	46	47	48	49	50	51	52	53	54	55
XVII	56	57	58	59	60	61	62	63	64	65	66
XVIII	67	68	69	70	71	72	73	74	75	76	77
XIX	78	79	80	81	82	83	84	85	86	87	88
XX	89	90	91	92	93	94	95	96	97	98	99
XXI	100	101	102	103	104	105	106	107	108	109	110
XXII	111	112	113	114	115	116	117	118	119/122	120/123	121/124

Figure S1. Two-dimensional peptide matrix. The single peptides of Zika virus C **(A)** and E **(B)** proteins were arranged into a matrix with each individual peptide present in two separate pools (Roman numerals). The individual peptides (Arabic numerals) are numbered according to their appearance in the amino acid sequence of the respective protein; e.g. C1 = MKNPKKKSGGFRIVN = amino acid position 1-15. Positive responses obtained with matrix pools were further tested using individual peptides to confirm a positive result.

Supplementary Figure 2. Mapping of CD4 T cell responses for Zika virus C and E proteins. Total spot count of all responses to single peptides in Zika patients. Amino acid positions of peptides in C (left panel) and E (right panel) protein sequences are indicated on the x-axes. Epitope clusters are denoted by the first amino acid of the N-terminal 15-mer peptide used for single peptide testing. Positions of corresponding protein domains are shown below the x-axes as colored bars: alpha helix 1-4 (H1-H4) and the transmembrane domain (TM) of the C protein (left panel); domain I-III (DI-III), stem and transmembrane domain (TM) of the E protein (right panel). SFCs, spot forming cells.

.