

Supplementary Materials

Discovery of potent Dishevelled/Dvl inhibitors using virtual screening optimized with NMR-based docking performance index

Kiminori Hori^{1†}, Kasumi Ajioka², Natsuko Goda¹, Asako Shindo³, Maki Takagishi⁴, Takeshi Tenno^{1,5}, and Hidekazu Hiroaki^{1,2,5,*}

- ¹ Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Aichi, Japan
- ² Department of Biological Science, School of Science, Nagoya University, Nagoya 464-8601, Aichi, Japan
- ³ Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8601, Aichi, Japan
- ⁴ Department of Pathology, Graduate School of Medicine, Nagoya University, Nagoya, 466-8550, Aichi, Japan
- ⁵ BeCellBar LLC, Business Incubation Center, Nagoya University, Aichi, Nagoya 464-8601, Aichi, Japan

* Correspondence:

Hidekazu Hiroaki, hiroaki.hidekazu@f.mbox.nagoya-u.ac.jp

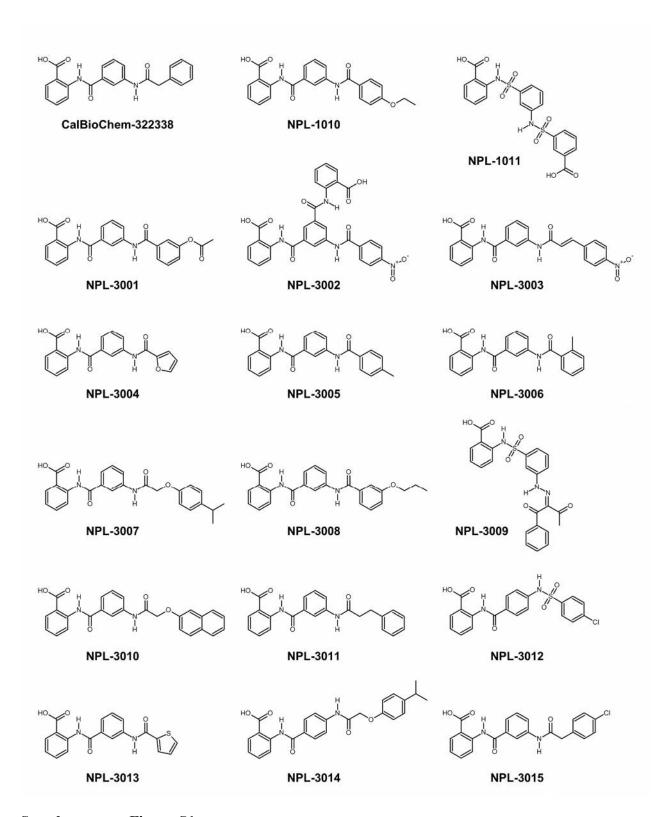
Supplementary Material

Supplementary Table S1

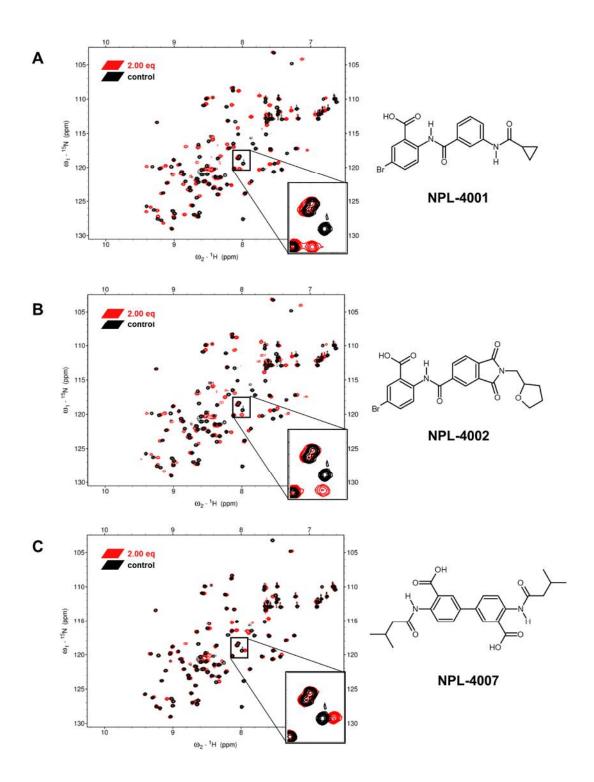
Supplementary Figure S1

Supplementary Figure S2

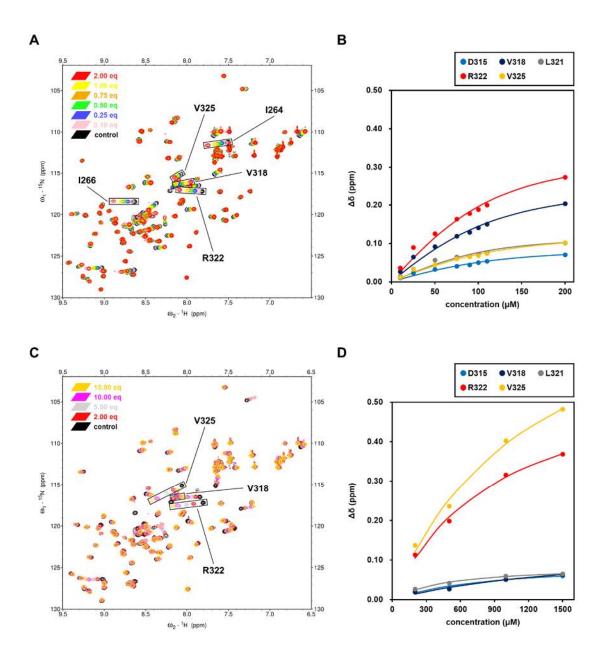
Supplementary Figure S3

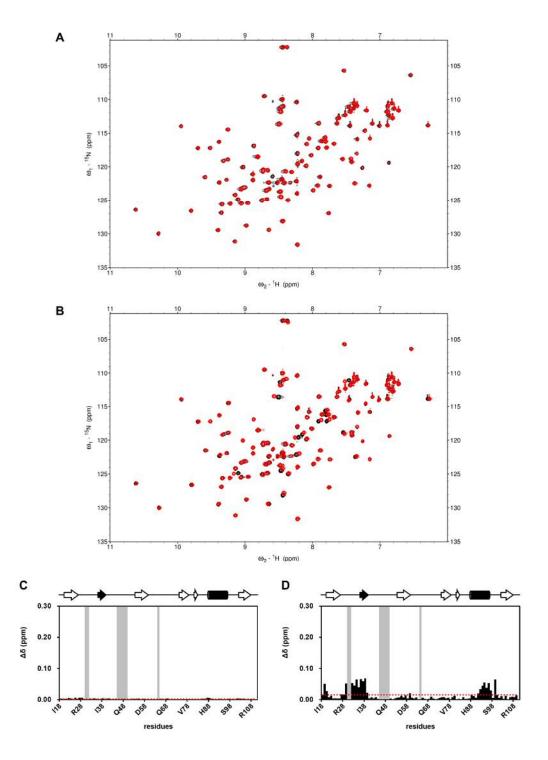

Supplementary Figure S4

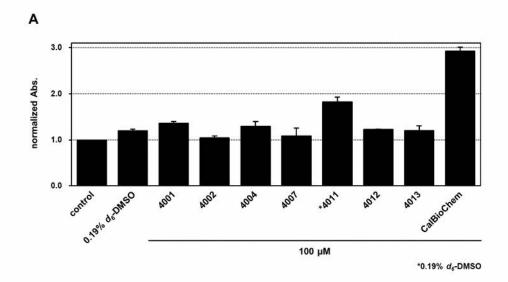
Supplementary Figure S5

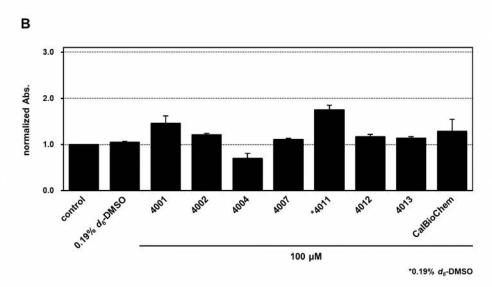

Supplementary Table S1

Compound ID (NPL-)	$\Delta\delta_{ave.}$ / ppm	GOLD Score	Compound ID (NPL-)	$\Delta\delta_{ave.}$ / ppm	GOLD Score
4001	0.089	49.23*	4011	0.058	98.59
4002	0.073	51.53*	4012	0.043	95.83
4003	0.003	60.09	4013	0.037	98.47
4004	0.030	60.84	4014	0.012	86.14
4005	0.002	46.60	4015	0.017	83.81
4006	0.003	59.76	4016	0.005	59.52
4007	0.025	64.39			
40081	0.018		¹ CalBioChem-322338		
4009^2	0.003	-	² sulindac		
4010³	0.003	-	³ BMD4702		


Normalized total CSPs of hDvl1-PDZ induced by 2.0 eq. of the advanced Dvl1-PDZ binding compounds. GOLD scores are also indicated as the score with consensus scoring of the function GS-CS. The compounds with $\Delta\delta_{\text{ave.}}$ larger than 0.010 are marked as bold, which were judged as potential binding. Although NPL-4001 and 4002 showed lower docking scores than the other, the compounds were assessed because they possessed Br atom in the amino-benzoic acid moiety. NPL-4008 ~ 4010 are the reported Dvl binders, CalBioChem-322338, sulindac, and BMD4702, respectively.


Full list of the prototypical PDZ domain-binding compounds used in the study with CalBioChem-322338.


Expanded region of ¹H-¹⁵N HSQC spectra of hDvl1-PDZ for the NMR titration experiment of hDvl1-PDZ with NPL-4001 (A), 4002 (B), and 4007 (C), with the corresponding chemical structures. The spectra with 0 eq. (black) and 2.0 eq. (red) of the indicated ligand were overlaid.



Comparison of the NMR titration experiment of hDvl1-PDZ with NPL-4011 (A, B) and CalBioChem-322338 (C,D). The assignments of the signal series are labeled. A. Expanded region of ¹H-¹⁵N HSQC spectra of hDvl1-PDZ with 0 eq. (black), 0.25 eq. (pink), 0.5 eq. (navy), 0.75 eq. (green), 1.0 eq. (orange), 1.2 eq. (yellow) and 2.0 eq. (red) of NPL-4011 were overlaid. B. Expanded region of ¹H-¹⁵N HSQC spectra of hDvl1-PDZ with 0 eq. (black), 2.0 eq. (red), 5.0 eq. (grey), 10 eq. (magenta) and 15 eq. (orange) of CalBioChem-322338 were overlaid. C. Normalized chemical shift changes of the selected hDvl1-PDZ residues upon titration with NPL-4011 were plotted against the ligand concentration. Solid lines indicate the non-linear fitting curves of each signals based on the single-site binding model. D. Normalized chemical shift changes of the selected hDvl1-PDZ residues upon titration with CalBioChem-322338 were plotted against the ligand concentration.

Comparison of the NMR titration experiment of mZO1-PDZ1 with NPL-4011 (A, C) and CalBioChem-322338 (B,D). The assignments of the signal series are labeled. A. $^{1}\text{H-}^{15}\text{N}$ HSQC spectra of mZO1-PDZ1 with 0 eq. (black), and 2 eq. (red) of NPL-4011 were overlaid. C. $^{1}\text{H-}^{15}\text{N}$ HSQC spectra of mZO1-PDZ1 with 0 eq. (black), and 2 eq. (red) of CalBioChem-322338 were overlaid. B, D; normalized chemical shift changes $\Delta\delta$ is plotted against residue numbers. Gray residues are missing or unassigned residues, and white residues indicate Pro. The secondary structure of mZO1-PDZ1 is shown at the top of the figures, whereas $\alpha2$ and $\beta2$ are shown in black.

Cytotoxicity of the compounds, NPL-40XX and CalBioChem-322338 against BT-20 triple negative breast cancer. Cells were treated with 100 μ M of the compounds for 48 h (A) and 96 h (B) including final 0.1% d_6 -DMSO. LDH activity assay was performed to evaluate comparative cytotoxicity. BT-20 triple negative breast cancer cell with indicated compounds, NPL-40XX and CalBioChem-322338. Control cells was incubated with the medium containing 0.1% d_6 -DMSO. NPL-4011 was examined in the presence of 0.19% d_6 -DMSO. The results of normalized absorbance at 490 nm of LDH activity assay with standard deviation were indicated.