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8 Appendix

8.1 Key relevant results from [4]

In order to make this manuscript self containing we include in this section key relevant lemmas,
corollaries and definitions from [4].

Lemma 8.1 (Lemma 2.5, [4]). Let S be an index set of cardinality s. For any level j of the dyadic
splitting, j = 0, . . . , �log2 s� − 1, the set S is decomposed into disjoint sets each having cardinality
Qj =

�
s
2j

�
or Rj = Qj − 1. Let qj sets have cardinality Qj and rj sets have cardinality Rj, then

qj = s− 2j ·
� s

2j

�
+ 2j , and rj = 2j − qj . (132)

Lemma 8.2 (Lemma 2.3, [4]). Let B, B1, B2 ⊂ [n] where |B1| = b1, |B2| = b2, B = B1 ∪B2 and
|B| = b. Also let B1 and B2 be drawn uniformly at random, independent of each other, and define
Pn (b, b1, b2) := Prob (|B1 ∩B2| = b1 + b2 − b), then

Pn (b, b1, b2) =

�
b1

b1 + b2 − b

��
n− b1
b− b1

��
n

b2

�−1

. (133)

Definition 8.1. Pn (x, y, z) defined in (133) satisfies the upper bound

Pn (x, y, z) ≤ π (x, y, z) exp(ψn(x, y, z)) (134)

with bounds of π (x, y, z) given in Lemma 8.3.

Lemma 8.3. For π (x, y, z) and Pn (x, y, z) given by (134) and (133) respectively, if {y, z} < x <
y + z, π (x, y, z) is given by

�
5

4

�4 � yz(n− y)(n− z)

2πn(y + z − x)(x− y)(x− z)(n− x)

� 1
2

, (135)

otherwise π (x, y, z) has the following cases.

�
5

4

�3 �y(n− z)

n(y − z)

� 1
2

if x = y > z; (136)

�
5

4

�3 �(n− y)(n− z)

n(n− y − z)

� 1
2

if x = y + z; (137)

�
5

4

�2 �2πz(n− z)

n

� 1
2

if x = y = z. (138)

Lemma 8.4. Define

ψn(x, y, z) := y · H
�
x− z

y

�
+ (n− y) · H

�
x− y

n− y

�
− n · H

� z

n

�
, (139)

then for n > x > y we have that

for y > z ψn(x, y, y) ≤ ψn(x, y, z) ≤ ψn(x, z, z); (140)

for x > z ψn(x, y, y) > ψn(z, y, y); (141)

for 1/2 < α ≤ 1 ψn(x, y, y) < ψn(αx,αy,αy). (142)
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Corollary 8.1. If n > 2y, then π(y, y, y) is monotonically increasing in y.

The following bound, used in [4], is deducible from an asymptotic series for the logarithms
Stirling approximation of the factorial (!)

16eNH(p)

25
�
2πp(1− p)N

≤
�
N

pN

�
≤ 5eNH(p)

4
�

2πp(1− p)N
. (143)

8.2 Derivation of Inequalities

8.2.1 Inequality 64

By Lemma 8.1, the left hand side (LHS) of (64) is equal to the following.

q0 (q1r1) · (q2r2) · (q3r3) · · ·
�
q�log2 s�−2r�log2 s�−2

�
=

�
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�s
1

�
+ 1

�
·
�
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�s
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�
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2−

�
s− 2 ·

�s
2

�
+ 2
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× · · · ×

�
s− 2�log2 s�−2 ·

� s

2�log2 s�−2

�
+ 2�log2 s�−2

�

×
�
2�log2 s�−2 −

�
s− 2�log2 s�−2 ·

� s

2�log2 s�−2

�
+ 2�log2 s�−2

��
. (144)

We simplify (144) to get the following.
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. (145)

We upper bound −�z� by −z and �z� by z + 1 to upper bound (145) as follows.
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− s
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·
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2�log2 s�−2
+ 2�log2 s�−2

�
·
�
2�log2 s�−2 · s
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The bound (146) is then simplified to the following.

(2 · 2) · (4 · 4) · (8 · 8)× · · · ×
�
2�log2 s�−2 · 2�log2 s�−2

�
= 22 · 42 · 82 × · · · × 22�log2 s�−4 (147)

= 41 · 42 · 43 · · · × 4�log2 s�−2 (148)

≤ 4

��log2 s−1
i=1 i

�
(149)

= 4
1
2
(log2 s−1)·log2 s = 2(log2 s−1)·log2 s . (150)

In (149) we upper bound �log2 s� by log2 s + 1; while in the LHS of (150) we computed the
summation of a finite arithmetic series. After some algebraic manipulations of logarithms we end
up with the RHS of (150), which simplifies to (64).

8.2.2 Inequality 65

Again by Lemma 8.1, the left hand side (LHS) of (65), i.e. (aQ0aQ1aR1aQ2aR2aQ3aR3 · · · a3a2)1/2
is equal to the following.
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�a� s
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. (151)
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Given the monotonicity of a(·) in terms of its subscripts, which indicate cardinalities of sets.
Due to the nestedness of the sets due to the dyadic splitting, we upper bound a� s

2j
�−1 by a s

2j
, and

a� s

2j
� by a s

2j
+1, resulting in the following upper bound for (151).
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In (153) we used the fact that 2log2 s−2 is a lower bound to 2�log2 s�−2. We fix as = (1−�)ds =: cs
and we require expansion to hold for all |S| ≤ s, i.e. as� = cs� for all s� ≤ s. Thus we can re-write
(153) as follows.
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In (155) we substitute as for cs. Next we factor as out in all the brackets to have the following.
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In total we have twice (log2 s− 2) plus 1 factors of as. We use this and the fact that c/as = 1/s
to simplify (156) to (157), which further simplifies to (158) by rearranging the terms in (157).
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We focus on bounding the second line of (158), ignoring the square-root for the moment, that
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From (159) to (161), we used simple algebra involving logarithms. Upper bounding log(1 + x) by
x, since log(1 + x) ≤ x for |x| < 1, we upper bounded the exponent involving the second log term
to upper bound (161) by the following.
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=
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The exponent of the exponential on the right of (162) is a geometric series and this simplifies to the
LHS bound of (163). The RHS bound of (163) is due to upper bounding e1/2−2/s by e1/2. Using
the bound in (163), we upper bound (158) by the following.
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which is the bound in (65), hence concluding the derivation as required.


