
Detorakis et al. Neural and Synaptic Array Transceiver

5 APPENDIX

5.1 Notation and Abbreviations

Symbols Description

A Transition matrix
b Bias term
x[t] Neural state
ǫǫǫ[t] STDP eligibility function
K(⋅) STDP kernel function
W Synaptic weights
θθθ Threshold
ηηη Additive noise
ΞΞΞ Multiplicative noise (Bernoulli distribution)
Xr Reset value
s[t] Spike train
>> Right bit shift
◦ Hadamard product
⋄ Bit-shift multiplication operation
� Zero-rounding bit shift operation

Table 1. Notation

Abbreviation Description

NSAT Neural and Synaptic Transceiver Array
FPGA Field-programmable Gate Array
DED Differed Event-driven
AER Address Event Representation
AON Always ON
RLE Run Length Encode
STDP Spike-timing Dependent Plasticity
LTP Long-term Potentiation
LTD Long-term Depression
DSP Digital Signal Processing
RTL Register Transfer Level
SNN Spiking Neural Network
ASIC Application-specific integrated circuit
MNN Mihalas-Niebur Neuron
DoG Difference of Gaussians
SynOp Synaptic Operations
MAC Multiplication Accumulation
GPU Graphics Processing Unit
eCD event-based Contrastive Divergence
S2M Synaptic Sampling Machine
eRBP event-based Random Back-propagation
RBM Restricted Boltzmann Machine
eRBM event-based Restricted Boltzmann Machine
eRBMhp event-based Restricted Boltzmann Machine high precision

Table 2. Abbreviations

5.2 Algorithmic description of bit-shift operators

Frontiers 27

Detorakis et al. Neural and Synaptic Array Transceiver

Algorithm 2 Zero-rounding bit shift operation (�)

function a� x
y = a ⋄ x
if y ≠ 0 and a = 0 then

return sign(−y)
else

return a
end if

end function

Algorithm 3 Bit shift multiplication operation (⋄)

1: function a ⋄ x
2: if a ≥ 0 then
3: return x ≪ a
4: else if a < 0 then
5: return sign(x)(∣x∣ ≫ −a)
6: end if
7: end function

5.3 Software Implementation Details

In order to demonstrate the capabilities of the proposed NSAT framework, we implemented a

multi-thread software simulator in the C programming language called cNSAT. The software has

been designed to accommodate foreseeable specifications imposed by the hardware, and thus all

operations use 16-bit integer (fixed-point) and binary arithmetics (no multiplications) as described in

the Difference Equations of NSAT Framework section.

5.3.1 Data structures

Each thread is implemented as a large data structure that contains all the necessary data structures for

implementing NSAT. The most significant data structure is the one that implements the neuron. Each

neuron unit structure carries all the parameters necessary for integrating the neuron’s dynamics and

performing learning (Fig. 11). We distinguish the neurons into two main categories, external neurons

and internal (NSAT) neurons. External neurons have plastic (adjustable) post–synaptic weights and

STDP counters, but no dynamics. Internal neuron dynamics follow Eq. (6). Every neuron consists of a

synaptic tree implemented as a linked list containing all the post–synaptic weights and the id number

of the post–synaptic neurons. Only internal neurons have access to the NSAT params structure

and to the Learning params structure. In addition, a state data structure is added to the

internal neurons for keeping track of the dynamics (state of the neuron).

Every thread data structure has as members the neuron’s data structure (internal and external), the

spike event lists, some temporary variables that are used for storing results regarding NSAT dynamics,

variables that gather statistics, monitor flags, filenames strings for on–line storing of spike events or

other variables (such as neuron states and synaptic weights), and finally shared to neuron parameters

such as number of neurons (internal and external) within a thread, and other parameters (see Parameters

paragraph below).

5.3.2 Random Number Generator

The random number generator (RNG) is implemented in two different ways. First, we used the PCG

RNG library (O’Neill, 2014)
3

to implement a uniform random number generator with long period.

3
http://www.pcg-random.org/

This is a provisional file, not the final typeset article 28

http://www.pcg-random.org/

Detorakis et al. Neural and Synaptic Array Transceiver

Figure 11. Schematic representation of NSAT data structures and information flow. The neuron
structure is the main component of the NSAT software simulator. The neuron’s dynamics, learning and
state parameters data structures are shown. Red and black arrows represent pointers and information
flow, respectively. See the text for more information regarding the parameters and information flow.

Based on the PCG library we implemented a Box–Muller (Box et al., 1958) transformation in order to

acquire normal distributions for the additive noise of the NSAT framework.

The second implementation is used for simulating hardware implementations of the NSAT framework.

In order to reliably generate uniformly distributed random numbers in a hardware implementation,

we used a linear feedback shift register (LFSR) in combination with a cellular automata shift register

(CASR) (Tkacik, 2002). Such types of RNGs are suitable for hardware devices and provide a robust

and reliable random number generator. This implementation is used for bit accurate simulations of

future NSAT hardware implementations.

5.3.3 Parameters

NSAT framework parameters can be split into three main classes. The first one contains global

parameters related to the entire simulation and the configuration of the NSAT framework. The second

class includes parameters for neurons dynamics and for the learning process. Figure 11 shows the

neuron’s and learning parameters (NSAT params and Learning params structures, respectively).

The third class contains parameters local to each thread.

Parameters of the first class are the number of simulation time steps (or ticks), the total number of

threads, the seeds and the initial sequences for the random number generators, a flag (Boolean variable)

that indicates which of the two random number generators is used, a learning flag (Boolean variable)

that enables learning, and the synaptic strengths boundary control flag (Boolean variable) that enables

a synaptic weight range check to more closely match hardware implementations.

The second class of parameters, the neuron parameters (refer to NSAT params struct), includes

the state transition matrix A, the constant current or bias b, and sA matrix which contains the signs of

matrix A. σσσ is the variance for the additive normal distributed noise and p is the blank-out probability

(corresponding to ΞΞΞ in Eq. (8)). In addition, it contains the spike threshold (θθθ), the reset value (X
r
), the

Frontiers 29

Detorakis et al. Neural and Synaptic Array Transceiver

upper (Xup) and the lower boundaries (Xlow) for each neural state component. The latter two constants

define the range of permitted values for each state component. The spike increment value increases or

decreases the after-spike state component value instead of resetting it. A Boolean parameter enables

or disables the reset of a neuron. An optional parameter permits variable firing threshold, whereby

component x1 is used as firing threshold for the neuron. An integer parameter defines which state

component is assigned as plasticity modulator. Finally, another parameter sets the synaptic weights

gains.

The third group consists of learning parameters. Each neural state component has its own synaptic

plasticity parameters (see Fig. 11), enabled by a single flag. The rest of the learning parameters define

the STDP kernel function (K(⋅) in Eq. (11)). The STDP kernel function is either a piecewise linear

function or a piecewise exponential one that can approximate the classical STDP exponential curve

or other kernel functions. The approximation uses either three linear segments for which we define

the length, the height (level) and the sign or three exponential-like segments for which we define the

length, the height, the sign and the slope, thus we have eight parameters that define the kernel function

(four for the causal part and four for the acausal one).

Fig. 12(c) illustrates a realization of NSAT approximated STDP kernel function. tca (tac) controls

the length (time dimension), hica (hiac) controls the amplitude (height), sica (siac) defines

the sign for the causal (acausal) part, and slca (slac) characterizes the slope of the exponential

approximation. On a given thread, different types of neurons and synapses can be defined by assigning

them to separate parameter groups.

Finally, the third parameter group concerns the core configuration. Each parameter group specifies the

number of internal and external units within a thread, states configurations per thread and in addition

some extra parameters for the use of temporary variables necessary in simulations.

5.3.4 Python Interface

In order to facilitate the use of the software simulator (and the hardware later on) we developed

a high-level interface in Python. The Python Interface (pyNSAT from now on) is based on Numpy,

Matplotlib, Scipy, pyNCS and Scikit-learn Python packages. The pyNCS (Stefanini et al., 2014) is

used for generating spike trains, read and write data from/to files and it provides proper tools for data

analysis and visualization of simulations results.

Figure 13 illustrates an example of pyNSAT script simulating a neuron with four state components

(xi, i = 0 . . . 3). The script mainly consists of five parts. First, we instantiate the configuration class.

This class contains all the necessary methods to configure the simulation architecture and define the

global parameters for the simulation, such as the total number of threads (or cores) to be used, number

of neurons per thread, number of state components per neuron per thread, number of input neurons per

thread and the simulation time (in ticks), Fig. 13(a). NSAT model parameters such as the matrix A of

the NSAT dynamics, the biases b and many other parameters regarding the dynamics of the neuron

and the model are defined as shown in Fig. 13(b). The next step is to define the synaptic connectivity

(the architecture of the network), Fig. 13(c). Fig. 13(d) illustrates how the pyNSAT writer class is

invoked for writing all the binary files containing the parameters that the C library will use to execute

the simulation. Finally, we call the C NSAT library and execute the simulation (see Fig. 13(e)).

The shown example is a single neuron with adaptive threshold (more details regarding this neural

model are given in Mihalas–Niebur Neuron paragraph in Results section). After simulating the model,

we can visualize the results (see the right bottom panel in Fig. 13. The first row shows the membrane

potential (state component x0[t], blue line) of the neuron, the second row indicates the adaptive

threshold (x1[t], black line), and the third and fourth rows are two internal currents (x2[t] and x3[t],
magenta and cyan colors), respectively.

This is a provisional file, not the final typeset article 30

Detorakis et al. Neural and Synaptic Array Transceiver

0 50 100 150 200
Time (ticks)

5

10

Sy
na

pt
ic

 s
tr

en
gt

h

Causal
Update

Counter
Expiration

Acausal
Update

(b)

pre-synaptic
neuron

post-synaptic
neurons

(a)

Time (= pre post)

Sy
na

pt
ic

 s
tr

en
gt

h

(c)

Acausal Causal

16 36 64

-16-36-64
1
2

Figure 12. NSAT STDP learning rule. An actual simulation of a neuron (black dot, black spikes)
connected to three post-synaptic ones (blue, magenta, cyan). (a) A pre–synaptic neuron (black node)
projects to three post-synaptic neurons (blue, magenta and cyan nodes). Three spikes are emitted
by the post-synaptic neurons (corresponding colored arrows) and then a spike is fired by the pre–
synaptic neuron. Then an acausal update takes place since the post-synaptic spikes triggered within
the acausal STDP time-window. Most recent post-synaptic spikes cause a causal update within the
temporal limit defined by the causal STDP time-window. The light-gray lines indicate the pre-synaptic
neuron’s spike time, the red and black arrows illustrate the acausal and causal updates, respectively.
(b) Temporal evolution of the post-synaptic weights. The acausal and causal updates are aligned
with panel’s (a) spikes. The gray vertical lines indicate the pre-synaptic spikes. Notice the latest
weights update at 187 ticks. These causal updates are due to the expiration of the pre-synaptic neuron’s
counter (pre-synaptic neuron does not fire a spike at that time). (c) The STDP kernel function (linear
and exponential approximations) used in this simulation (only the linear part). Black and red colors
indicate the causal (positive) and the acausal (negative) parts of the STDP kernel function, respectively.
Darker–colored lines illustrate the linear approximated STDP curves, and lighter–colored ones the
exponential approximation (both types are supported by the NSAT framework).

5.3.5 Simulation Details

The software simulator uses a simulator implemented in the C Programming Language. All the

source code used in this work are distributed under the GPL v3.0 License and are available on-line

(https://github.com/nmi-lab/NSAT). All simulation parameters are provided in the source

code accompanying this work and in the Supplementary Information. The Python interface for the

NSAT framework has been written for Python 2.7.

Frontiers 31

https://github.com/nmi-lab/NSAT

Detorakis et al. Neural and Synaptic Array Transceiver

Figure 13. PyNSAT Example. Source code snippets for creating a simple simulation of a single neuron
with four state components (xi, i = 0, . . . , 3). The Python script (a) instantiates the main configuration
class, (b) sets neural dynamics, (c) defines the architecture of the network (synaptic connections), (d)
writes all the parameters files and finally (e) calls the C library for running the simulation. The results
of the simulation can be easily visualized using Python’s packages.

5.4 Amari’s Neural Fields Simulation

In order to numerically solve Eq. (15), we temporally discretize it using the Forward Euler method

and thus we have,

ui[t + 1] = ui[t] + dt
τ (− ui[t] + I

ext
i + hi + dx

k

∑
j=1

wijf(uj[t])), (23)

where i is the spatial discrete node (unit or neuron), dt is the Euler’s method time step and dx is the

spatial discretization step.

As input to the neural field we use a Gaussian function with variance of 0.3 (black dashed line in

Fig. 14(a)). At the end of the simulation the neural field has converged to its stable solution which is a

“bump”, as expected with a DoG kernel function (Fig. 14(a), red line). Figure 14(b) depicts the temporal

evolution of numerical integration of Eq. (15) using the following parameters: Ke = 1.5Ki = 0.75,

σe = 0.1 and σi = 1.0. The integral is defined in Ω = [0, 1] and we simulate for 50 seconds. After

This is a provisional file, not the final typeset article 32

Detorakis et al. Neural and Synaptic Array Transceiver

about 7 seconds (200 simulation steps) the numerical solution converges to a fixed point (see (Amari,

1977) for more details).

0 127
Space (# neurons)

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5
(a) w(r)

u(r, t ∗)

I(r)

0 7 14 21 28 35 42 49
Time (s)

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

u
(r
,t

)

(b)

Figure 14. Amari’s Neural Field of Infinite Precision. A numerical simulation of Eq. (23). In

(a) Blue and red solid lines indicate the lateral connectivity kernel (w(r)) and a solution u(r, t∗) for a

fixed time step t
∗

, respectively. The black dashed line displays the input Iext to the neural field Eq. (23).
In (b) is illustrated the temporal numerical evolution of Eq. (23) for every spatial unit i. It is apparent
that after about 7 seconds the system has reached its equilibrium point.

5.5 Supervised Event-based Learning

Figure 15. 8-bit and 5-bit synaptic precision. The red curve illustrates the test error of the feed-
forward network described in section 3.3 trained with 5 bit synaptic precision. The blue curve indicates
the same network trained with 8-bit synaptic precision. It is apparent that at the initial stages of learning
the higher precision (8-bits) leads to a smaller error than the 5-bit precision. However, at the later states
of learning both networks express similar behavior having similar test errors.

5.6 Unsupervised Representation Learning

Frontiers 33

Detorakis et al. Neural and Synaptic Array Transceiver

(a) RBM Receptive Fields

8

6

4

2

0

2

4

6

(b) eRBMhp Receptive Fields

1500

1000

500

0

500

1000

1500

Sy
na

pt
ic

 S
tr

en
gt

h

(c) eRBM Receptive Fields

100

50

0

50

100

Figure 16. Event-based Restricted Boltzmann Machine (eRBM) receptive fields. (a) Clas-
sical RBM of infinite precision trained on the bars and stripes data set, (b) hRBMhp with 16-bit
precision synaptic weights, and (c) eRBM with 8-bit precision synaptic weights.

This is a provisional file, not the final typeset article 34

	Appendix
	Notation and Abbreviations
	Algorithmic description of bit-shift operators
	Software Implementation Details
	Data structures
	Random Number Generator
	Parameters
	Python Interface
	Simulation Details

	Amari's Neural Fields Simulation
	Supervised Event-based Learning
	Unsupervised Representation Learning

