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Appendix  

The inputs to the model are the tree structure, vascular properties and pressure boundary 

conditions. The flow rates in the pre-capillaries are determined from network flow analysis 

described below. As the flow regulation is a highly nonlinear phenomenon that occurs over several 

cardiac cycles, it is linearized by assuming the active vessel properties to vary only between cardiac 

cycles and do not vary within a cardiac cycle. The regulated variables of diameters, pressures and 

shear stresses in the tree at the end of each cardiac cycle are from the network flow analysis which 

then update the microvascular properties.  

A.1   Lumped model of the coronary tree 

Lumped models for flow in each vessel was based on an electric-hydraulic analogy and were 

formulated with a resistor-capacitor (RC) element. The R-C circuit has two nonlinear resistors (

1 , 2 ) connected in series with one capacitor C. Flow in each vessel was solved by a three 

element Windkessel lumped model (Jacobs, 2008). The capacitive element represents the volume 

change in each elastic vessel. The resistance   (or conductance G) and capacitance C of each 

vessel are: 
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The junction common to the resistors and the capacitor has an unknown pressure, Pmid. The 

junction of a vessel bifurcation has an unknown nodal pressure (Pnode). Based on the conservation 

of fluid mass, the net flow at both the junctions is zero. Assumptions in the Windkessel model are 

a) vessel geometry is uniform, b) flow in the vessels is laminar, c) blood viscosity in all the vessels 

is a nonlinear function of vessel diameter (Pries et al., 1994) , d) active and passive vessel 

properties are spatially homogeneous in each vessel, e) the dynamic extravascular pressure PT is 

uniform along each vessel but varies between vessels depending on their trans-mural location, and 

f) the active vessel response depends on the time averaged pressure, flow and metabolic signal.  

A system of Ordinary Differential Equations (ODEs) were derived based on the 

conservation of mass for all junctions as, 
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where Pi
T  is the given input signal of the extra-vascular pressure which depends on the myocardial 

transmural wall location. The mass conservation in each vessel R-C junction is: 
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where , ( )L iP t is longitudinal pressure drop in each vessel. 

The net flow between mother and daughter vessels at a designated “network node” is zero. 

Application of mass conservation at each node, additional equations for the nodal pressures were 

obtained. For an ith vessel, which is neither source nor sink, mass balance at the vessel inlet yields: 
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Hence, the inlet nodal pressure as a function of neighboring vessel pressures and conductance is 

given by: 
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Similarly, applying mass balance at the outlet node for the ith vessel gives: 
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For a source vessel, the inlet pressure, ( )inP t  and for a sink vessel, the outlet pressure, ( )outP t are 

prescribed boundary conditions. The governing equations are assembled for the network into a 

system of ODEs. The coupled ODEs are nonlinear, time dependent and are represented in matrix 

form as: 
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For a coronary tree with n number of vessels, A is a square matrix of size n x n and B is an n x 1 

vector.  

 

A.2   Construction of A and B matrices 

The network structure matrix in Table 1 for a subtree (n = 400) was used to build the coefficient 

matrices A (n x n) and B (n x 1). The connectivity matrix is an n x n square matrix with the row 

index of a filled cell indicating the vessel number and the column index indicating the vessel in 

direct contact. The indices of the non-zero elements at an ith row in A correspond to the ith vessel 

properties and its neighbors. A vessel connected to bifurcating vessels at its origin and end has 

indices (i, n-1), (i, n-2), (i, n1) and (i, n2) for the mother, sister and two daughters respectively. The 

corresponding conductance’s are: 
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.  A vessel with a trifurcating branch at its 

end has an additional daughter with index (i, n3) with conductance 3n

iG . A vessel with a trifurcating 

vessel at its origin has an additional sister with index (i, n-21). For a vessel, i, connected to 

bifurcations at both its ends, the elements of matrices A are 



A3 

 

1 1 2 2 1 1 2 2, , , , , , , , ,

mid mid mid mid mid

i n i n i n i n i i i n i n i n i n i

mid

idP
A P A P A P A P A P B

dt    
           (A9) 

1 2 1 2

,

, , , ,

2
2i i i

i i

i i i n i n i i n i n

G G G
A

C G G G G G G
 

 
   

     

, 1

1

1 2

,

,

, ,

2 i ni
i n

i i i n i n

GG
A

C G G G





 

 
  

   

  (A10) 

2

2

1 2

,

,

, ,

2 i ni
i n

i i i n i n

GG
A

C G G G





 

 
  

   

, 1

1

1 2

,

,

, ,

2 i ni
i n

i i i n i n

GG
A

C G G G

 
  

   

, 2

2

1 2

,

,

, ,

2 i ni
i n

i i i n i n

GG
A

C G G G

 
  

   

 

(A11) 

For a vessel, i, connected to a bifurcation at its origin and a trifurcation at its end, the elements of 

matrices A are  
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For a vessel, i, connected to a trifurcation at its origin and a bifurcation at its end, the elements of 

matrices A are  
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If an ith vessel is terminating, the elements at each row in A are  
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For the source vessel, the elements of A are 
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For all interior vessels, the elements of B are 
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For a pre-capillary ith vessel, the elements at each row in B are  
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For the source vessel, the elements of B are 
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For a single vessel, boundary conditions at the inlet and outlet are 

1 2 3 1 2 3( ) ( ) ( ) ( ); ;out in in node in in out out outP t P t P t P t P P P P P         (A23) 

A.3   The flow boundary conditions 

Waveforms of the inlet pressure, Pin(t), outlet pressure, Pout(t), LV pressure, PLV(t), and intra-

myocyte pressure, PSIP(t), are input signals to the flow analysis (Fig. A.1). The Pout(t) signal was 

interpolated for different transmural locations based on predictions from simulation of the 

unregulated flow in an entire coronary network which included arterial and venous trees and four 

identical representative capillary networks, at relative myocardial depths (MRD) of 0.125, 0.375, 

0.625 and 0.875 (Algranati et al., 2010). PLV(t) waveform was taken from predictions based on a 

preliminary study of a distributive LV mechanical model (data not shown) under resting heart rate 

of 75 BPM. Several considerations guided the choice of the Pin(t) signal for the sub-endocardial 

400 vessel network.  The first is the pressure drop from the aorta to the trunk vessel (order 6) of 

the subtree. On the other hand, there is a pressure increase due to the added intra-myocyte pressure, 

PSIP(t) which develops during contraction (Rabbany et al., 1989). In addition, Pin(t) must provide 

for sufficient flow perfusion in the terminal order 1 vessels (0.4 x 10-3 mm3/s) (Tillmanns et al., 

1974;Ashikawa et al., 1986;Stepp et al., 1999). Based on these considerations, Pin(t) was chosen 

to be 87/55 mmHg (with average inP =66) in systole/diastole and the signal shape was adopted 

from Algranati et al. (Algranati et al., 2010). The network output pressure 
outP  signal was assigned 

for each terminal vessel to be between the previously predicted sub-epicardium and sub-

endocardium signals out

subepiP   and 
out

subendoP   (Fig. A.1), depending on the transmural location of the 
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vessel. The tissue pressure PT(t) signal was derived based on a previous analysis of un-regulated 

coronary flow (Algranati et al., 2010). 

 

 

 

 

 

 

 

 

 

Fig A.1: Signals of the periodic pressure boundary conditions. Pin(t), the inlet pressure in the 

subtree trunk order 6 vessel is based on the measured range in these vessels (Chilian, 1991). The 

outlet pressure, Pout(t) at a terminal order 1 arteriole was taken to be dependent on each vessel 

relative myocardial depth (MRD) (Algranati et al. 2010). The LV pressure PLV(t) was adopted 

from a distributive LV mechanical model (Nevo and Lanir, 1989)  under a resting heart rate of 75 

BPM.  

A.4    Vessel wall constitutive properties 

The vascular wall is a composite of passive and active elements. The passive vascular model 

includes the vessel tethering to the myocardium. The active properties are due to the myogenic 

response of the smooth muscle cells and the flow regulation is due to the endothelial response to 

the blood near wall shear stress. The vascular mechanical properties are dependent on the vessel 

size.  

The passive vessel tension is described by Laplace law as: 

  pas regT P r                                         (A24) 

Vessels do not collapse due to the combined action of vessel tethering, passive response of vessel 

wall and active smooth muscle cell contraction. Hence, the balance of forces on the wall are given 

by 

                     reg teth pas actP r T T T                     (A25) 
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The pressure generated by the tethering struts in the gap between vessel wall and myocardium is 

taken to be a quadratic function of the gap as in 
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The strut pressure leads to the tethering tension, 
tethT  given as 
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The radius of a vessel under flow regulation is given as  

      reg p mr r A r                                       (A28) 

where pr  , A, and 
mr are respectively the vessel’s passive radius, its flow-induced activation and 

the radius reduction due to the myogenic response.  

Following Liao and Kuo (1997) experimental study and modeling, the shear vessel activation A is 

a sigmoidal function of the absolute value of time-averaged shear stress  , and is given by 
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Following the same experimental study, the passive radius, pr  and the change in vessel radius due 

to myogenic response, 
mr  are given respectively by 
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Order-dependent values of the above passive and active vessel parameters have been 

experimentally determined for some micro-vessel orders (Liao and Kuo, 1997) and interpolated 

for other orders (Namani et al., 2018).  

The passive vessel tension is determined from the regulated radius as 

   pas regT P r                 (A32) 

The passive, tethering and active vessel stiffness’s under flow regulation conditions are 
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The composite vessel dynamic stiffness is the sum of the three stiffness components given as  

act pas tethk k k k                                                        (A34) 

From the total dynamic stiffness, the vessel compliance as a function of the dynamic trans-vascular 

pressure, ( )P t  is  
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The vessel compliance is a nonlinear function of the vessel dynamic radius. The vessel 

compliance is written as a Taylor’s series expansion of the dynamic vessel radius and neglecting 

any second order variation in vessel radius leads to the following expression 
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A.5    Numerical solution of network flow 

The ODE is integrated over the cardiac cycle for each vessel as a function of time. The elements 

of A are vessel properties – conductance and capacitance given by Eqs. A10 – A19 and elements 

of B are Eqs. A20 – A22. Construction of A and B matrices and multiplication of the square matrix 

A with P is a significant computational challenge as Eq. A8 has to be evaluated for every time 

instant during the numerical integration process. The time span of integration for the system of 

ODE’s was the time taken for one entire cardiac cycle. The cardiac time cycle was normalized to 

1.0 and the system of ODE’s was iteratively solved till the periodicity condition between 

successive cardiac cycles was satisfied. Periodicity condition is met when the difference in midP  

between the start and end of the cardiac cycle for each vessel did not vary by more than 0.005 Pa. 

Numerical accuracy of the solution is met when the net flow at the mid-point in all the vessels and 

at the network bifurcating or trifurcating nodes was less than 0.1%. 

A.6     Validation of the sub-tree flow solution  

To verify the accuracy of the numerical flow solution, simulations were carried out to verify if the 

flow periodicity condition was satisfied; i.e., smoothness of the transition between nodal pressures 

from the end of one cardiac cycle to the start of the next. The smoothness tolerance was set to 

0.075 mmHg. The convergence of the computational results was estimated as follows: based on 

the network flow solution, the net inflow/outflow deviation at each time point (from the requisite 

zero level) was calculated at each vessel mid-node and at each network bifurcation. This was 

carried out for both the passive and regulated network flow, and under both steady as well as 
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dynamic flow conditions. Convergence was satisfied when all flow deviations were smaller than 

1% of the inflow to the respective node and vessel junctions. 
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