IMP4 RPF1 BRX1-1 BRX1-2 SNAIL1 ARPF2	LLTTSRNPSAPLIRFTKELKFVFPNSQRINRGSQVISEIIETARSHDFTDVILVHEHRGVPDGLIISHLPFGPTAYFGLLNVVTRHDISDK LLTTCRFNSTRGPALISELLSVIPNSHYQKRGTYDLKKIVEYATKKDFTSLIVVHTNRREPDALLIIGLPNGPTAHFKLSNLVLRKDIKN- LVTCSRRINFRYRHLMLNMVSLLPHCKKDSKVEAKSSRGATLNELIELKGSSSCLFFECRKHKDLYMWMVKSPGGPSVKFLVNAVHTMEELKLT LVTCSRRISFRYRSLMLNIVSLLPHCKKDSKVEAKSSKGATLNELIELKNSNSCLFFECRKHKDLYMWMVKSPNGPSVKFLVKAVHAMEEMKLT FVFSRMKLAGPVKQLQMDLRKLMLPYTALSLKEKKRNTLRDFLNVSGPMGVTHFLMLSKTAS-SLSLRVARTPQGPTLTFKIHQYSLASDIAQS LILHGTKTSATLSSVMTELYRLKKGGAIRYSRRNENIRPFESGGETSLEFFSQKTDCSIFVYGSHTKKRPDNLVLGRWYDHQVYDLIEVGIENFKSLRAF	91 90 94 94 93 100
IMP4 RPF1 BRX1-1 BRX1-2 SNAIL1 ARPF2	KS IGKMPEQYPHL IFN-NFTTQMGQRVGN ILKH IFP-APKLDAKRIVTFSNQSDYISFRNHVY	152 158 168 168 192 177
IMP4 RPF1 BRX1-1 BRX1-2 SNAIL1 ARPF2		

Figure S1 Alignment of amino acid sequences of Brix domains from Arabidopsis thaliana. The sequence alignment was produced with the ClustalW program (http://www.genome.jp/tools/clustalw/). Amino acid residues conserved in all amino acid sequences are shaded in gray.

> Supplemental Figure S1 Maekawa et al.

ARPF2	MMEIRTPKTGKAKRVLESRAPKLVETGKKTLILHGTKTSATLSSVMTELYRLKKGGAIRY	60
Rpf2	MIRTVKPKNARAKRALVKREAKLVENVKQALFIPGQSCNKNLHDIMVDLSALKKPDMKRF	60
ARPF2	SRRNENIRPFESGGETSLEFFSQKTDCSIFVYGSHTKKRPDNLVLGRMYDHQVYDLIEVG	120
Rpf2	NRKND-IHPFEDMSPLEFFSEKNDCSLMVLMTSSKKRKNNMTFIRTFGYKIYDMIELM	117
ARPF2	IENFKSLRAFSYDKKFAPHEGTKPFICFIGEGFENVSELKHLKEVLTDLFRGEVVDNLNL	180
Rpf2	VADNFKLLSDFKKLTFTVGLKPMFTFQGAAFDTHPVYKQIKSLFLDFFRGESTDLQDV	175
ARPF2	TGLDRAYVCSAISPTKVFLTHCALKLKKSGSIVPRMELVEVGPSMDLVIR	230
Rpf2	AGLQHVISMTIQGDFQDGEPLPNVLFRVYKLKSYKSDQGGKRLPRIELVEIGPRLDFKIG	235
ARPF2	RNRLPNDSLMKEAMRTSKDKPKKKEKNVDQDAVLGKTGKIYMPDQKLKEMKLFDK	285
Rpf2	RIHTPSPDMVTEAHKKPKQLEMKTKKNVELDIMGDKLGRIHMGKQDLGKLQTRKMKGLKS	295
ARPF2	SKGSKRERKDAKLKHKEETVAKKMKVSSE 314	
Rpf2	KFDQGTEEGDGEVDEDYEDEASYSDDGQEYEEEFVSATDIEPSAKRQKK 344	

Figure S2 Alignment of amino acid sequences of ARPF2 and Rpf2. The sequence alignment of ARPF2 (At3g23620.1) and *Saccharomyces cerevisiae* Rpf2 (NP_013007.1) was produced with the ClustalW program (http://www.genome.jp/tools/clustalw/). Similar and identical amino acid residues in the two amino acid sequences are shaded in light and dark gray, respectively. The sequences of the Brix domain are indicated by red line.

Supplemental Figure S2 Maekawa et al.

Figure S3 Co-expression network including *ARPF2*. A co-expression network of *ARPF2* was obtained using the ATTEDII program (http://atted.jp/) with the parameter "Coexpression data; All". Genes reported as "ribosome-related gene" are indicated by red dots; At1g31660, Missbach et al. (2013); *RID2* (At5g57280) and *RID3* (At3g49180), Shinohara et al. (2014); *YAO* (At4g05410), Li et al. (2010); *L24e* (At2g44860) and *L30/L7* (At1g80750), Carroll et al. (2008); *RH10* (At5g60990), Matsumura et al. (2016); *SMO4* (At2g40430), Zhang et al. (2015). Genes encoding Brix domain-containing proteins are indicated by blue dots. *ARRS1* is indicated by black dot.

Supplemental Figure S3 Maekawa et al.

ARRS1	MDTEMETEQIYQVDVGNLLAFNPNHRFPSAPSSRGELVKEILTEGTKL	48
Rrs1	MSAEDYKNI PVTVEKPIPVVYDI GNI AAEDSNVI DKNDI DSSNARREEKIKSI TRDNVOI	60
ARRS1	VQEIANKLFNFPSTETNDGPIVQLPPPTTKLPREKHIPRPKPPTKWEEFALK	100
Rrs1	LINQLLSLPMKTTTESVGGTGGQSSVMTLLQLPDPTTDLPREKPLPKAKAMTKWEKFAAK	120
ARRS1	KGIQKRKKE-KVVWDEQTNQFKRRHGYDRVNDDNDVPIIEAKESDEPGVDPFAKR	154
Rrs1	KGIKPKERAGKMIYDEASGEWVPKWGYKGANKKLDDQWLVEVDDKVKGTDNELIDPRTLN	180
ARRS1	LDDKKKRVGKQEKNRLQNLKAAEKAGALPSHVQLAATSLPISGTKAQPKKIGKDELGDVA	214
Rrs1	RAERKRLVKKNEKQQRRNMKNAL	203
ARRS1 Rrs1	GLAATSTASGGKFDKKLPGEKPPKKQGKHHKYLPVVSGRGDVNAEKEQTNNVLSKIFSKH	274
ARRS1 Rrs1	SHEILNVGKAINMYNVKKEKKKSGRSDKLKPKKDITKKPANKAK 318	

Figure S4 Alignment of amino acid sequences of ARRS1 and Rrs1. Sequence alignment of ARRS1 (At2g37990.1) and *Saccharomyces cerevisiae* Rrs1 (NP_014937.1) was produced with the ClustalW program (http://www.genome.jp/tools/clustalw/). Similar and identical amino acid residues in the two amino acid sequences are shaded in light and dark gray, respectively.

Supplemental Figure S4 Maekawa et al.

Figure S5 Specificity of the ARPF2- ARRS1 interaction. (A) BiFC assays. ARPF2 fused to nGFP (ARPF2-nGFP) was co-expressed with cGFP-fused ARRS1 (ARRS1-cGFP) or RPL4A (cGFP-RPL4A) and FIB1-mCherry in *N. benthamiana* leaves. ARRS1-cGFP was also co-expressed with GFP-fused RPL4A (nGFP-RPL4A) and FIB1-mCherry. Scale bars: 10 µm. (B) Co-immunoprecipitation assays. ARRS1-MYC was transiently expressed alone or with ARPF2-GFP or GFP-RPL4A in *N. benthamiana* leaves. The ARPF2-GFP or GFP-RPL4A proteins in the crude cell extracts (Input) were immunoprecipitated with an anti-GFP antibody, and the obtained precipitates (Output) were analyzed with anti-GFP and anti-MYC antibodies.

Supplemental Figure S5 Maekawa et al.

Figure S6 Phenotypic analysis of transgenic *Arabidopsis* overexpressing *APUM24* or *PRH75*. (**A**) Levels of *APUM24* and *PRH75* transcripts in the wild type and *APUM24* or *PRH75* overexpressing plants. RNA was extracted from 10-day-old seedlings and technical triplicates were used for quantification. *UBQ10* was used as an internal control. The expression levels are relative to that in the wild type, and the values obtained with the wild type were set to 1. Error bars represent SD. (**B**) Photographs of the plants grown for 5 weeks. Scale bars: 5 cm.

Supplemental Figure S6 Maekawa et al.

Supplemental Table ST. LISCOLUTE FITTIEL Sequent
--

Primer name	Sequence (5'-3')			
Vector construction				
pRPF2 5'entry	CACCACCTATAGAGACGACAATGTC			
pRPF2 3'entry	GACTCTGTTAAATCGCCGGAAAG			
RPF2 5'entry	CACCATGATGGAAATACGAACTCC			
RPF2 3'entry	CTCAGAAGAGACCTTCATCTTTTTGG			
RRS1 5'entry	CACCATGGACACGGAGATGG			
RRS1 3'entry	CTTGGCTTTGTTGGCAGGCTTC			
APUM24 5'entry	CACCATGTCTTCCAAAGG			
APUM24 3'entry	TTCAGGTTTCTTGGTTGCTGAGATC			
PRH75 5'entry	CACCATGCCTTCCCTAATGTTATCTG			
PRH75 3'entry	TCAATATCTCTGGCCTCTACCACCAC			
RPL4A 5'entry	CACCATGGCCGCCGCCGCT			
RPL4A 3'entry	TTACTGGCTAGCACCGAGCCATTTG			
Genotype check				
Primer "A"	TGGTTCACGTAGTGGGCCATCG			
Primer "B"	TTCATAACCAATCTCGATACAC			
Primer "F"	GTCACTATAGTTGTTGCTTACCTCATG			
Primer "R"	GTCGTTTCTTCGTGTGAGAACC			
RT-qPCR				
RPF2 F	CATCCAAGGATAAGCCTAAGAAGAAG			
RPF2 R	CTCAGAAGACACCTTCATCTTTTG			
RRS1 F	TGGGGATGTTAACGCAGAAAAAGAAC			
RRS1 R	CTTGGCTTTGTTGGCAGGCTTC			
APUM24 F	CTTGTCAACAGTGGCCTTG			
APUM24 R	TCACACAGCTTCTCGCTCAG			
PRH75 F	GAGGATTCTACTAAAGTCCAGAC			
PRH75 R	ATAATATCAGGAATCAACCGAGCC			
UBQ10 F	GATCTTTGCCGGAAAACAATTGGAGGATGGT			
UBQ10 R	CGACTTGTCATTAGAAAGAAAGAGATAACAGG			
Forward primer of "1" in Fig. 5	TTCGGCGTATGAGTGGTG			
Reverse primer of "1" in Fig. 5	CATTCATCGATCACGGCAATTCC			
Forward primer of "2" in Fig. 5	AACGACCCGCGAACCAAAGATCAC			
Reverse primer of "2" in Fig. 5	ACACTTTTCGTGCCGGGGTTTTGTG			
Forward primer of "3" in Fig. 5	CGACTCTCGGCAACGGATAT			
Reverse primer of "3" in Fig. 5	TTGTGACACCCAGGCAGACG			
Forward primer of "4" in Fig. 5	ATCGTCGTCCCTCACCATCCTTTGCTGATG			
Reverse primer of "4" in Fig. 5	GCATGTCGGTACGCTCCA			
Forward primer of "5" in Fig. 5	TGATCCATTACATTTTATCGGTCGC			
Reverse primer of "5" in Fig. 5	CTTAAACTCAGCGGGTAATCC			
Forward primer of "6" in Fig. 5	CACGTCTGCCTGGGTGTCAC			
Reverse primer of "6" in Fig. 5	Same as reverse primer of "5" in Fig. 5			
Forward primer of "7" in Fig. 5	AATCCGGGCTAGAAGCGACG			
Reverse primer of "7" in Fig. 5	AATTCAAGGCGGTCCGAACGAC			
Forward primer of "8" in Fig. 5	GCCCTTTGTCGCTAAGATTCGA			
Reverse primer of "8" in Fig. 5	GTTTTGGACAAGTCTGTCTCTTCAC			
Forward primer of "9" in Fig. 5	GATGCGATCATACCAGCACTAATGC			
Reverse primer of "9" in Fig. 5	AGGGATGCAACACGAGGACTTC			

Supplemental Table S1 Maekawa et al.