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1 In silico experiments to substantiate attenuated hemodynamics 5 

 6 

As we specifically instructed our subjects to refrain from head movements, our raw signals must 7 

have contained a mixture of systemic cardiovascular, local vascular and local neural contributions. In 8 

terms of the relationship between oxy- (HbO) and deoxyhemoglobin (HbR), either correlated or 9 

anticorrelated fluctuations are elicited by these influences. The purpose of correlation-based signal 10 

improvement (CBSI) — the preprocessing step used in this study — is to enhance the separation of 11 

neurogenic and vasogenic fluctuations based on their differing influence on the strength of HbO-HbR 12 

relationship. At this end, our aim in these in silico experiments was to assess their cross-correlation 13 

during a “perturbation” (representing functional hyperemia) for enhancing the  interpretation of the 14 

relative and time-varying impact of oxygen extraction (due to neural activity), local and systemic 15 

vascular effects.  16 

 17 

The model of Buxton et al. (Buxton et al., 1998) treats the regional vascular compartment (i.e. 18 

the one being connected to a perforating artery in the brain cortex) as a “balloon” with given 19 

viscoelastic properties. The actual size of the balloon is determined by the balance between its arterial 20 

blood inflow, fin(t), and venous blood outflow, fout(t). The latter at constant cerebral oxygen 21 

consumption — via the oxygen content of blood within the balloon — will determine the time course 22 

of oxygen-dependent modalities such as BOLD (blood oxygen level dependent signal) (Buxton et al., 23 

1998) or for that matter HbO and HbR signals. This model found widespread use in brain activation 24 

studies for describing the hemodynamics during periods of transient hyperperfusion (i.e. functional 25 

hyperaemia) as captured by fMRI-BOLD or fNIRS. Cui et al. (Cui et al., 2010) used this model for 26 

simulating the link between balloon dynamics and running correlation (Pearson, t=5 s) between HbO(t) 27 

and HbR(t) measured by NIRS during transient hyper- and hypoperfusion elicited by passive head 28 

movements.  29 

 30 

In this study, we performed in silico hemodynamic experiments based on the balloon model of 31 

Buxton et al. (Buxton et al., 1998) in order to substantiate our in vivo findings with r(s) difference 32 

observed between young and elderly group measurement groups. Hemodynamic response to neural 33 
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activity was treated as an input of the balloon model simulated by transients in blood inflow, (fin). fin(t) 34 

can be described in a combination of relative baseline (f0), direction and magnitude (Δf) of change as 35 
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The ascending and descending part of fin(t) was modelled with a gamma variate function (GVF), 36 

where t refers to real time, tp denotes the peak time of the GVF and δ is a dispersional parameter set to 37 

5.21 in the entire in silico study (Herman et al., 2009). The duration of the transient is determined by 38 

tp, which was set to 1.8 s in all simulations. Values to Δf and tp were assigned to achieve a reasonable 39 

match the CBF response to a step change in arterial blood pressure decaying in about 5 seconds (Aaslid 40 

et al., 1989). The effect of perturbed fin(t) on balloon-level hemodynamics was investigated for a single-41 

cycle response within the time frame of simulation starting with zero time, t0 (Figure S1). The balloon 42 

properties are described by two RC-components (representing resistance and compliance) with a 43 

characteristic time (τ) describing transit (subscript 0) and “post stimulus undershoot” (subscript v). By 44 

solving the differential equation system (Eqs. S2-S4), the dynamics of oxygen extraction fraction (E) 45 

from the balloon, HbO and HbR were obtained as predictions of these in silico experiments.  46 
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 47 

A testing framework was designed to evaluate the influence of baseline perfusion, frequency 48 

of hemodynamic response and viscoelastic properties on the HbO-HbR cross-correlation. The relative 49 

values chosen for f0 were: 0, 0.3 and 1 corresponding to zero, low or normal baseline flow, respectively. 50 

The balloon dynamics was analyzed for periodic times (T) set to 12, 20, 60, 300 and 1200 seconds. 51 

The hemodynamic transient brought about by neurovascular coupling was altered by varying τ0 and τv 52 

(see Table S1) representing RC-elements in the model. From the estimates of HbO and HbR, the in 53 

silico r(T) — the endpoint of these simulations obtained at balloon cycle duration — was calculated in 54 

the same way as rσ(s) from the measured in vivo HbO and HbR records for given time scales. Please 55 

note that these simulations correspond to single-balloon dynamics for a single cycle, while the in vivo 56 

observed rσ(s) reflect spatial average of multiple cycling for multiple balloons in the ROI at various 57 

time scales.  58 
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 59 

Figure S1.  Simulation of HbO-HbR relationship during functional hyperemia. Single-balloon 60 

dynamics (A) is shown in terms of changes in inflow (Eq. S1). Oxygen extraction fraction, HbO and 61 

HbR were calculated from Eq. S2-S4. Flow pattern-dependent increase in perfusion (red) or length of 62 

cycling period (green) fundamentally affecting the cross-correlation of hemoglobin chromophores (B) 63 
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may well implicate attenuated vascular dynamics (for parameter values see Table S1). Please note that 64 

increased periodic time, T, represents a case of decreased incoming signalling. The effect of time 65 

constants of the model (post-stimulus undershoot, mean transit time) is moderate but also unequivocal 66 

(C) supporting a possible contribution of vascular stiffening or endothelial dysfunction to the observed 67 

hemodynamics. 68 

 69 

In Figure S1, panel B we show predictions for r(T) for different baseline flow amplitudes and 70 

balloon cycling frequencies. Even healthy aging may implicate a drop in regional perfusion; 71 

accordingly, on the one hand a reduced f0 results in a marked increase in HbO-HbR correlation, despite 72 

the increased E, which is an anticorrelating effect. On the other hand, decreased cycling frequency is 73 

also accompanied with increased r(T), which could be explained by the decreased triggering rate of 74 

neurovascular coupling likely due to decreased incoming (neural) signalling. Together, these results 75 

indicate that the HbO-HbR correlation dynamics is mainly determined by the degree of exchange in 76 

the balloon compartment: relatively deoxygenated blood is continuously replenished by oxygen-rich 77 

blood via fin(t) thus anticorrelating the HbO-HbR dynamics, which is further enhanced by transients 78 

due to hemodynamic response. 79 

 80 

Table S1. Balloon model parameters in our testing framework 81 

Flow pattern  Varying parameters of Eq. S1 

I  f0 = 1, Δf=+0.7 

II  f0 = 1, Δf=+0.2 

III  f0 = 0.3, Δf=+0.7 

IV  f0 = 0.3, Δf=+0.2 

V  f0 = 0, Δf=+0.7 

VI  f0 = 0, Δf=+0.2 

Cycling 

period 
Short 

    
Long 

12 18 21 24 27 30 33 

20 20 25 30 35 40 45 

60 20 30 40 50 60 70 

300 30 60 90 120 150 180 

l200 60 120 180 240 300 360 
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 82 

Modifying balloon viscoelastic properties — with maintained f0 and cycling periods1 — also 83 

moderately alters the observed r(T) (Figure S1, panel C). Increased τ0 and τv imply a lengthening 84 

transit of blood through the balloon allowing more time for oxygen extraction, which renders the HbO-85 

HbR relationship more anticorrelated. Decreased mean transit time and post stimulus undershoot are 86 

associated with decreased compliances responsible for more rapid transient upon perturbation in fin(t) 87 

allowing less time for oxygen extraction. Hence it is reasonable to regard an increase in r(T) as a 88 

manifestation of either vascular stiffening or dysfunctional endothelium.  89 

 90 

Symbols and abbreviations for the Balloon model 91 

q — deoxyhemoglobin  92 

v — blood volume 93 

p — total hemoglobin 94 

fin – blood inflow 95 

E — oxygen extraction fraction  96 

E0 — resting net oxygen extraction fraction (Buxton et al., 2004) 97 

τ0 — mean transit time 98 

τv — duration of post-stimulus undershoot (Mildner et al., 2001) 99 

α — “fitted flow-volume coefficient” as described by Grubb et al. (Grubb et al., 1974) 100 

 101 

2 In silico experiments to substantiate attenuated neurodynamics 102 

 103 

Our rsNIRS recording via neurovascular coupling captures the hemodynamic fingerprint of a 104 

hierarchical neural system having multiple inputs at local neuronal levels (ion channels — integrate 105 

and — fire) and a single output converging as incoming signalling at the ROI level (Freeman et al., 106 

2003), each exhibiting scale-free correlations (Werner, 2010). Consistent with this view, the incoming 107 

network size and associated signalling were simulated using the sand pile square lattice model of Bak 108 

et al. (Bak et al., 1987), where the size of the network was defined by the size of the lattice and the 109 

resting state incoming signaling by the random dropping of sand grains integrated as global response 110 

over the lattice as follows. 111 

                                                 

1 Only main effects were evaluated in the statistical analysis, interaction between model parameters (treated as 

independent variables) were not taken into account.  
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 112 

We carried out in silico experiments in addition to demonstrate the link between global 113 

temporal correlation, Ĥ(2) and focus (maximal variance, ln(Ŝσ(N))) to substantiate the observed 114 

decrease in, Ĥ(2), and focus as manifestations of an age-related decline in incoming signaling. To 115 

simulate regional temporal neurodynamics, we relied on a modified version of the cellular automaton 116 

square lattice model (Bak et al., 1987) to allow its use in a small-world setting known to be a 117 

fundamental feature of the human cerebrocortical neural network (Sporns, 2006). To employ cellular 118 

automata with a small-world instead of the regular lattice connection layout, adjacency matrices of 119 

small-world networks were created according to the Watts-Strogatz method (Watts and Strogatz, 1998) 120 

that were used as the connection layout of the automata. The generator parameters were the number of 121 

nodes in the graph representing network size, NS [100, 400, 900, 1600], the node degree, defining the 122 

number of links and therefore the connection density, D, the fraction of existing edges to all possible 123 

edges in the network, [<0.1, 0.2, 0.3, 0.4, 0.5]. Both parameters reflect upon interrelated aspects of the 124 

input network, specifically, size and cross-scale interactions. The edge randomization parameter p was 125 

set between 0.015 and 0.03, yielding networks with high clustering coefficient while still having low 126 

average shortest path length, as per the definition of small-world topology by Watts and Strogatz 127 

(1998). Continuous external perturbation (one sand grain falling on a randomly chosen cell per cycle) 128 

established a self-organized critical state while the system is observed for >218 cycles in this state: the 129 

number of sand grains in the system is captured in F(t). Each node has a critical value determined by 130 

its node degree: when such number of sand grain accumulates at that node relaxation occurs. At this 131 

point grains get equally distributed among the directly connected nodes giving rise to avalanches of 132 

various sizes in the system. 20 realizations were produced for every case of density and network size. 133 

 134 
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 135 

Figure S2. Global scale-free temporal dynamics generated by sand pile model in cellular automata 136 

with small-world connectivity structures. In the critical state, the number of sand grains in the system 137 

(A) is determined by the relationship between the number of grain leaving the system at the edges 138 

during network avalanches and the number of grain falling in the network due to external perturbation. 139 

The temporal structuring of these signals is shown in (B) — where amplitude is rescaled to match each 140 

signal’s fluctuation range — along with displaying their associated Ĥ(2) and ln(Ŝ(N)).   141 
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 142 

Figure S3. Relationship between endpoint parameters of multifractal analysis and network metrics. 143 

Focus of the global network dynamics (represented by F(t)) is shown as a function of network sizes 144 

(A) and densities (B). Multifractal analysis also yielded estimates of  H(2) with strikingly similar 145 

dependence on NS (C) and D (D). As larger network size and longer observation time allow for larger 146 

spatiotemporal scales over which component networks and their dynamics can assemble, the focus and 147 

the correlation of the input network dynamics captured in a single ROI will increase.  148 

 149 

Multifractal analysis was performed at dyadic scales assuming a single scaling range (between 150 

smin=4 and smax=2048) and at q ranging from -15 to +15 with unit increments to evaluate the influence 151 

of network metrics on scaling properties at q=2 and estimated measure at s=N. The results of this 152 

analysis show that a decrease in network size is associated with a decreased magnitude of its global 153 

response to perturbation (related to ln(Ŝσ(N)) and decreased long-range correlation, Ĥ(2), too (Figure 154 

S2, Figure S3, Panels A and C). Next, we explored the relationship between connection density and 155 

the temporal correlations of global network dynamics, Ĥ(2) (Figure S3, Panels B and D) at the same 156 

range of NS. Notably, ln(Ŝσ(N)) and Ĥ(2) were found closely coupled across a wide range of link 157 

densities and network sizes that was reflected by the very similar dependence of these parameters as a 158 

function of either NS or D. Specifically, both of these parameters increased in case of larger number of 159 

nodes or higher network density. This suggests that these closely related aspects of network dynamics 160 

— ongoing intrinsic perturbation underlying resting-state activity — reflect upon network metrics. 161 
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 162 

Although based on measures of dynamics recorded from only a single ROI it is not possible to 163 

determine if network size or connection density changes, still inferences can be made on the incoming 164 

signalling as follows. The expected value of node degree corresponding to the ROI of our 165 

measurements is indeed the product of NS and D. Since both Ĥ(2) and ln(Ŝσ(N)) vary proportionally 166 

with NS and D, this nature of relationship should hold considering NS∙D instead of NS or D. 167 

 168 

This result of our in silico experiments (that is a model-based simulation of regional incoming 169 

neurodynamics) is consistent with the in vivo experimental findings of Baria et al. (Baria et al., 2013) 170 

evidencing that connectivity and complexity metrics are coupled. On this basis our interpretation of 171 

the age-related decrease in Ĥ(2) and ln(Ŝσ(N)) seems justified as a likely manifestation of age-related 172 

decline in neurodynamics resulting in decreased incoming signaling (concomitant to decreased node 173 

degree) (Meunier et al., 2009).  174 

 175 
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