
APPENDIX 
 

Evaluation of true multifractality and bimodality 

 

General scale-free behavior 

 

General fractal nature can be identified in the frequency domain, where it manifests as a scale-

free structuring of the power spectrum (Eke et al., 2000; Eke et al., 2002) (Figure A1B). The 

presence of power-law scaling should be verified prior to fractal analysis (Eke et al., 2002) 

within the actual SR of each time series and was identified following the recommendations of 

Clauset et al. (Clauset et al., 2009). β of each time series was estimated with the lowPSDw,e 

method (Eke et al., 2000). Then, n=100 power-law distributed data sets with matching β and 

length were generated with the spectral synthesis method (Saupe, 1988). The p-value was 

defined as the fraction of the surrogate datasets that show better fit to a power-law function than 

the original time series (using the Kolmogorov-Smirnov statistics). A time series was 

considered scale-free in the case of p>0.1. Accordingly, we performed the statistical tests and 

analyses proposed by Clauset et al. on the corresponding spectral estimates (Clauset et al., 

2009). This approach is generally applicable on apparently scale-free data of any kind (for 

example see these Refs. (Lo et al., 2002; He, 2011; Ihlen and Vereijken, 2013)). In our case it 

revealed that the power-law model failed on the data of eight subjects (Table A1) who thus 

were excluded from further analysis. 

 

Segregating true multifractality from multifractal noise 

 

Quantification of this pseudomultifractality (arising from multifractal noise, see (Grech and 

Pamuła, 2012) can be carried out by reshuffling techniques such as the procedures applied to 

rainfall data (Roux et al., 2009) or response time series (Ihlen and Vereijken, 2010). These 

methods preserve correlation structuring in the signal while eliminating local singular behaviors 

giving rise to multifractality.  Alternatively, the supporting base of D(h) can be used to 

determine if the analyzed signal is mono- or multifractal, as it was shown from 

electroencephalograms (Dutta, 2010; Gomez-Extremera et al., 2016). In this paper, an adaptive 

testing framework was elaborated similar to the latter approach following the methodological 

steps proposed in Refs. (Schumann and Kantelhardt, 2011; Grech and Pamuła, 2012). 

Multifractal estimates presented in the paper of Grech and Pamuła, in fact, have a much 

narrower supporting base as those of true multifractals, which served as one of the means for 

their segregation (Schumann and Kantelhardt, 2011; Grech and Pamuła, 2012). Given the 

deterministic relationship between H(q) and D(h), we applied the concept of supporting base – 

originally defined for D(h) – to Ĥ(q). Hence, the presented adaptive “mono- versus multifractal 

contrast” test focusing on the range of H(q) confirms if the supporting base of the empirical 

signals exceeds that of a multifractal noise (Figure A1C) (Racz et al., 2018). Accordingly, for 

every time series, n=100 monofractal (multifractal noise) signals with same length and H(2) 

were generated with the Davies-Harte method (Davies and Harte, 1987) and analysed with the 

FMF-SSC method. Then, one sample t-test or Wilcoxon rank sum test was performed at αs=0.05 



(level of significance) to check if the ΔH15 values obtained from surrogate datasets were in fact 

smaller than that of the original time series. In fact, the more divergently the variance profiles 

fan out from their focus the higher is the possibility that the signal is a true multifractal reflected 

by an increased ΔH15. This test verified that all subject’s NIRS signals were true multifractals 

as the difference in the scaling of fluctuations of different sizes were significantly larger than 

those of pseudomultifractal noise signals with same monofractal property. 

  

Distribution- versus correlation-type multifractality  

 

In order to ensure that the origin of scale-invariance is due to genuine autocorrelation in the 

signal and not a broad power-law probability density function of its values (Kantelhardt et al., 

2002; Eke et al., 2012), each time series was shuffled and then re-analysed in n=100 

realizations, as shuffling destroys LRC but has no effect on the distribution (Figure A1D). 

Since LRC is attributed to q=2 (and fractal analysis is precise for small positive moments), Ĥ(2) 

of the shuffled time series were compared to that from the original time series with one sample 

t-test or Wilcoxon rank sum test at αs=0.05. A time series was considered LRC multifractal, if 

shuffling significantly decreased estimated H(2) towards 0.5. While shuffling procedure 

destroyed the LRC structuring enabling to segregate cases of distribution-type fractality, none 

of the signals proved to be falling in this category. 

 

 
 
Figure A1. Verification of scale-free property and characterization of multifractality in terms of noise-, 

distribution and correlation-type multifractality. (A) Scaling function, Sσ(q, s) of HbT signal; s: scale, q: moment 

order. (B) Power spectrum of HbT signal. A: amplitude. (C) Scaling function of monofractal signal generated at 

equal length (N) and H(2). While Grech and Pamuła used an empirical level for separating mono- and multifractals 

(given as 0.12 for N=214), our method adjusts the process to Ĥ(2) of the signal in question. (D) Scaling function of 

shuffled HbT signal. Note that in case of empirical multifractal signals, both distribution- and correlation-type 

multifractality are usually present to some extent, therefore as shuffling will reduce Ĥ(2) of a mainly correlation-

type multifractal, Ĥ(2) would not reach the theoretical 0.5 value of fully uncorrelated time series. 



 

Table A1. Excluded subjects – SubjectID (age) 

 

Power-law test   Multifractal noise test   LRC test 

HbO HbR HbT   HbO HbR HbT   HbO HbR HbT 

F21 (56) 

M34 

(27) 

F12 (46) 

F20 (56) 

M33 

(25) 

M40 

(39) 

M42 

(45) 

  none   none 

 

Screening for bimodal character of the measured resting state NIRS signals 

 

Bimodality was evaluated in all of the cases remaining by performing F-test on the ratio of 

model-misfits normalized by the number of model parameters as given by 

𝐹 =
(
𝑆𝑆𝐸1 − 𝑆𝑆𝐸2
𝑝2 − 𝑝1

)

(
𝑆𝑆𝐸2

𝑛 − 𝑝2 − 1)
, 

(A1) 

where subscript 1 refers to the unimodal fit (with no breakpoints and lower number of 

parameters) while subscript 2 refers to the scaling-range adaptive bimodal fit. Accordingly, p1 

is the number of model parameters (number of used moment orders and focus) for the unimodal 

regression analysis, while p2 is the same for the bimodal regression analysis.  Estimation was 

based on n=1860 scaling function values as the product of the number of moment orders (31) 

and scales used (60); meanwhile:  p1=32 and p2 = 2p1 = 64. 

 

All scaling functions seemed having a bimodal structure with a two-teared scaling of 

apparent power-law characteristics separated either by a convex or concave transient range (27 

% and 73 % of all cases, respectively). Eight of fifty-two subjects were excluded from the study 

based on their low ΔH15 (estimated for either of HbO, HbR and HbT) indicating multifractal 

noise. No further data were discarded based on shuffle-test or power-law test.  In the majority 

of evaluated cases bimodality of scaling function was confirmed. However, two more subjects 

were excluded due to unacceptable fit of the bimodal model. Thus 42 subjects were promoted 

to group-level statistical analysis (Table A1). Of note, after the removal of these outliers, all 

Ĥ(2) and hmax samples were normally distributed permitting of parametric tests (such as two-

way ANOVA). 
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