Supplementary Figure 1. Western blot analyses of CFP and YFP for (**A**) brainstem, (**B**) inferior colliculus and (**C**) hippocampus in control mice and mice exposed to 80 or 120 dB SPL. For brainstem and inferior colliculus, VGLUT1 was additionally analyzed, and for the hippocampus, GluA2 was additionally analyzed. Two examples are shown for each tissue and antibody. GAPDH is used as house-keeping gene. Note an increase of CFP, YFP, VGLUT1 and GluA2 in all tissues of mice exposed to 80 dB SPL. For originals see **Supplementary Figure 3**. **Supplementary Figure 2.** Original Western blots for Figure 2 A (**A-C**) and Figure 3 A (**D**). (**A**) – (**D**) Arrows indicate bands used in Figures. Images were inverted and for better visibility the contrast was adjusted. All quantitative analyses were performed on original images (**A**) Original Western blots for CFP, YFP, vGlut1 and GAPDH in the brainstem. (**B**) Original Western blots for vGlut1 and GAPDH in the inferior colliculus. (**C**) Original Western bolts for CFP, YFP and GAPDH in the olfactory bulb. (**D**) Original Western blots for CFP, YFP, GluA2 and GAPDH in the hippocampus. **Supplementary Figure 3.** Original Western blots for Supplementary Figure 1. Arrows indicate bands used in Supplementary Figure 1. Images were inverted and for better visibility the contrast was adjusted. All quantitative analyses were performed on original images (**A**) Original Western blots for CFP, YFP, vGlut1 and GAPDH in the brainstem. (**B**) Original Western blots for CFP, YFP, vGlut1 and GAPDH in the inferior colliculus. (**C**) Original Western blots for CFP, YFP, GluA2 and GAPDH in the hippocampus. **Supplementary Figure 4.** (**A**, **B**) Schaffer collateral fEPSPs were recorded from acute forebrain slices of 8-12-week-old mice. (**A**) Average fEPSP slope was plotted against stimulus intensity. No difference was observed between slices from controls or animals exposed to 80 dB SPL, 100 dB SPL, and 120 dB SPL. Traces from representative recordings are shown on the right. Data represented as mean \pm SEM (con n = 11 slices, 80 dB SPL n = 14 slices, 100 dB SPL n = 14 slices, 120 dB SPL n = 14 slices.) (**B**) Paired-pulse facilitation (PPF) was not different between slices from controls or animals exposed to 80 dB SPL, 100 dB SPL, and 120 dB SPL for all inter-stimulus intervals (I.S.I.). Traces from representative recordings are shown on the right. Data represented as mean \pm SEM (con n = 10 slices, 80 dB SPL n = 13 slices, 100 dB SPL n = 11 slices, 120 dB SPL n = 15 slices). **Supplementary Figure 5.** Expression of δ subunit containing GABA_A receptors (δGABA_A-R) and α subunit containing GABA_A receptor (α1GABA_A-R) in the hippocampal CA1 region. (**A-C**) Hippocampal CA1 region with magnification of the stratum pyramidale (SP) stained for δGABA_A-R (red) and parvalbumin (PV, green). (**A**) Note the co-localization of PV with δGABA_A-R-positive dots (arrows). Scale bars: $5 \mu m$. (**B**) δGABA_A-R-positive dots are contacted by PV-positive dendrites (arrows) of CA1 interneurons. Scale bars: $2.5 \mu m$. (**C**) No obvious changes are observed in δGABA_A-R expression (red, arrows) between the different treatment groups. Scale bars: $10 \mu m$. (**D**) Hippocampal CA1 region with magnification of the stratum radiatum (SR) stained for α GABA_A-R (green, arrows) and TUJ1 (red). Note the dynamic change in α GABA_A-R expression dependent on sound exposure (green, arrows). Bottom panel: High-power examination of the SR. Changes in α GABA_A-R expression around TUJ1-positive neurons can be observed. Scale bars: 10 μ m. (n = 4-5 animals /group). (**E**) Quantification of δ GABA_A-R (1-way ANOVA: F(3, 14) = 0.22 p = 0.88; con, 80 dB SPL n = 5 animals; 100 dB SPL, 120 dB SPL n = 4 animals) and (**F**) α GABA_A-R fluorescence in the CA1 region. Data represented as mean \pm SD (1-way ANOVA: F(3, 16) = 2.08 p = 0.14; n = 5 animals / group 2-3 repetitions). # Supplementary Table 1 Antibody information for immunohistochemistry and Western blot | Primary Antibodies | | | | | | | |---|--|--|-------------------|---|----------|--------------| | Immunohistochemistry | Antibody | Protein name | Product number | Source | Dilution | Protein size | | Cochlea / Brain sections | rabbit anti-
CtBP2/
RIBEYE | CtBP2/RIBEY
E | 10-P1554 | American
research
Products,
Inc., | 1:1,000 | | | | rabbit anti-
parvalbumin | Parvalbumin | ab11427 | Abcam | 1:2,000 | | | | mouse anti-
parvalbumin | Parvalbumin | P3088 | Sigma-
Aldrich | 1:500 | | | | guinea pig
anti-
α1GABA _A -
receptor | Gamma-
aminobutyric
acid type A
receptor α
subunit | 224204 | Synaptic
Systems | 1:500 | | | | rabbit anti-
δGABA _A -
receptor | Gamma-
aminobutyric
acid type A
receptor δ
subunit | AB9752 | Millipore | 1:1,500 | | | | guinea pig
anti-
VGLUT1 | Vesicular
glutamate
transporter 1 | 135304 | Synaptic
Systems | 1:1,500 | | | Western blot | rabbit anti-
RCFP | Reef coral
fluorescent
protein pan
antibody | 632475 | Clontech | 1:1,000 | 30-35 kDa | | | guinea pig
anti-
VGLUT1 | Vesicular
glutamate
transporter 1 | 135304 | Synaptic
Systems | 1:5,000 | 50 kDa | | | rabbit anti-
GluA2 | Glutamate
receptor
AMPA 2 | 182103 | Synaptic
Systems | 1:1,500 | 100 kDa | | ~ | mouse anti-
GAPDH | Glyceraldehyd
e 3-phosphate
dehydrogenase | ab8245 | Abcam | 1:10,00 | 40 kDa | | Secondary antibodies Immunohistochemistry | Antibody | Protein name | Product
number | Source | Dilution | Protein size | | Cochlea / Brain sections | Cy3-
conjugated
goat anti-
rabbit
antibody | | 111-166-
003 | Jackson
ImmunoR
esearch
Laborator
ies | 1:1,500 | | | | Alexa488-
conjugated
anti-mouse
antibody | | A11001 | Molecular
Probes,
MoBiTec | 1:500 | | | | Alexa488-
conjugated
anti-guinea
pig antibody | | A11073 | Molecular
Probes,
MoBiTec | 1:500 | | | Western blot | ECL anti-
mouse IgG
HRP linked | | NA 931-
100μ1 | GE
Healthcar | 1:2,500 | | | | | e UK
Limited | | | |---------------------------------------|------------------|---|---------|--| | ECL anti-
rabbit IgG
HRP linked | NA 934-
100μ1 | GE
Healthcar
e UK
Limited | 1:2,500 | | | Goat antigionea pig IgG-HRP | Sc-2438 | Santa
Cruz
Biotechno
logy Inc. | 1:7,000 | | ### Supplementary Table 2 Statistical information of the results | | | Statistical test | Test value | Degrees
of
freedom | <i>p</i> -value | Post-hoc test with <i>p</i> -value | | n-number | |------------------|---------------------------------|------------------|----------------------|--------------------------|-----------------|--|---|--| | Fig. A 1A C A 14 | Click-
ABR
TTS post
AT | 1-way ANOVA | F(3, 129) = 92.67 | | p < 0.0001 | Bonferroni's test
con vs. 80 dB
SPL
con vs. 100 dB
SPL
con vs. 120 dB
SPL | p<0.0001 | con n = 19 animals
80 dB SPL n= 19 | | | ABR
14d post
AT | 1-way ANOVA | F(3, 144) = 54.72 | | p < 0.0001 | con vs. 120 dB
SPL | p <0.0001 | animals
100 dB SPL n = 16
animals
120 dB SPL n = 19 | | Fig.
1B | noise-
ABR
14d post
AT | 1-way ANOVA | F(3, 142) = 75.45 | | p < 0.0001 | con vs. 120 dB
SPL | p < 0.0001 | animals | | Fig.
1C | f-ABR | 2-way ANOVA | F(3, 597) = 79.9 | | p < 0.0001 | con vs. 120 dB
SPL | p < 0.05 | | | Fig.
1E | ribbon
number | 2-way ANOVA | F(3, 60) = 11.08 | | p < 0.0001 | 1-sided unpaired
Student's t-tests
middle turn: con
vs. 80 dB SPL
con vs. 120 dB
SPL
midbasal turn: con
vs. 100 dB SPL
con vs. 120 dB
SPL | p < 0.05 $p < 0.01$ $p < 0.05$ $p < 0.05$ | n = 6 ears from 4
animals per group,
1-3 repetitions each,
8-24 IHCs per turn
and group | | Fig.
1F | CorF | 1-way ANOVA | F(3,
131) = 17.51 | | p < 0.0001 | Tukey's Multiple
Comparison test:
con vs. 120 dB
SPL
80 dB SPL vs.
120 dB SPL
100 dB SPL vs.
120 dB SPL | p < 0.001 $p < 0.001$ $p < 0.01$ | con n = 8 animals,
15 ears;
80 dB SPL n = 9
animals, 18 ears
100 dB SPL n = 5
animals, 10 ears;
120 dB SPL n = 9
animals, 17 ears | | Fig.
1G | wave I control | 2-way ANOVA | F(1, 1031) = 0.003 | | p = 0.955 | | | n = 18 mice/group | | | wave I
80 dB
SPL | 2-way ANOVA | F(1, 890) = 6.02 | | p = 0.0143 | | | n = 16 mice/group | | | wave I
100 dB
SPL | 2-way ANOVA | F(1, 836) = 28.59 | | p < 0.0001 | | | n = 15 mice/group | | | wave I
120 dB
SPL | 2-way ANOVA | F(1, 396) = 185.8 | | p < 0.0001 | | | n = 18 mice/group | |--------------|---------------------------|--------------------------------|---------------------|--------|------------|--|-----------|---| | | wave I V control | 2-way ANOVA | F(1, 1034) = 1.296 | | p = 0.2551 | | | n = 18 mice/group | | Fig.
1H | wave I V
80 dB
SPL | 2-way ANOVA | F(1, 951) = 0.89 | | p = 0.3446 | | | n = 16 mice/group | | | wave I V
100 dB
SPL | 2-way ANOVA | F(1, 743) = 0.09 | | p = 0.7706 | | | n = 15 mice/group | | | wave I V
120 dB
SPL | 2-way ANOVA | F(1, 452) = 82.88 | | p < 0.0001 | | | n = 18 mice/group | | Fig.
2A/B | | | | | | | | n = 5 - 6 mice/group
2 - 10 Western blots
each | | Fig.
2C/D | VGLUT1 | two-tailed
student's t-test | t = 3.63
df = 10 | | p = 0.0046 | | | n = 6 mice/group
2 - 3 repetitions | | Fig.
3A | | | | | | | | n = 5 mice/group
2 - 10 Western blots
each | | | | | | | | Bonferroni's test
baseline/tetanized
(b/t) | | | | | | 1-way ANOVA | | | | control | p < 0.01 | | | | fEPSP | | | | | 80 dB SPL | p < 0.001 | | | | | | | | | 100 dB SPL | p < 0.001 | n = 4 animals /group | | Fig.
3B | | | F(3, 19) = 4.99 | | p = 0.01 | 120 dB SPL | p < 0.01 | con 7 slices
80 dB SPL 7 slices
100 dB SPL 6 slices | | | | | | | | tetanized/tetanized (t/t) | | 120 dB SPL 5 slices | | | | | | | | con vs. 80 dB SPL | p < 0.01 | | | | | | | | | con vs. 100 dB
SPL | p< 0.01 | | | | | | | | | con vs. 120 dB
SPL | n.s. | | | | | | | | | Bonferroni's test | | | | | | on repteaed measure ANOVA | F = 2.56 | | | day 1 vs. day 2 | | | | | | | | | | day 1 vs. day 3 | | | | | con | | | DF = 5 | p = 0.033 | day 1 vs. day 4 | n.s. | | | | | | | DF = 5 | | day 1 vs. day 5 | | | | Eig | | | | | | day 1 vs. day 6 | | con n= 18 animals | | Fig.
3C | | | | | | | | 80 dB SPL n = 17 animals | | | | | F = 5.85 | | | day 1 vs. day 2 | n.s. | aiiiiiais | | | 80dB
SPL | | | | p < 0.001 | day 1 vs. day 3 | p = 0.013 | | | | | | | | | day 1 vs. day 4 | p = 0.054 | | | | | | | | | day 1 vs. day 5 | p = 0.006 | | | | | | | | | day 1 vs. day 6 | p < 0.001 | | | | | | | | | | | | | Fig.
5D | CFP | 1-way ANOVA | F(3,25) = 22.44 | p < 0.0001 | 80dB SPL vs. 120
dB SPL | p < 0.0001 | n=6 animals / group
4-6 repetition each | |------------|-------------|-----------------|---------------------|-----------------------|---------------------------------------|---|--| | | YFP | 1-way ANOVA | F(3, 25) = 3.32 | p = 0.036 | 80 dB SPL vs.
120 dB SPL | p < 0.05 | | | Fig. 6A-C | | | | | | | n = 6 animals/group | | | | | | | Bonferroni's test | | | | | | | | | con vs. 80 dB SPL | n.s. | con n= 6 animals
80 dB SPL n = 6 | | Fig. | | | | | con vs. 100 dB
SPL | p = 0.0301 | animals 100 dB SPL n = 5 | | Fig.
6D | | 1-way ANOVA | F(3, 19) = 5.96 p = | p = 0.0049 | con vs. 120 dB
SPL | n.s. | animals $120 \text{ dB SPL } n = 6$ | | | | | | | 100 vs. 120 dB
SPL | p = 0.01 | animals;
4-6 repetitions | | | | | | | Bonferroni's test | | con $n = 6$ animals 80 dB SPL $n = 5$ | | | | | | | con vs. 80 dB SPL | p < 0.05 | animals | | Fig. 6E | 1-way ANOVA | F(3, 19) = 4.61 | p = 0.0138 | con vs. 100 dB
SPL | p < 0.05 | 100 dB SPL n = 6
animals
120 dB SPL n= 6
animals
2 repetitions each | | | | | | | | Bonferroni's test
baseline/wash-in | | | | Fig.
6G | | 1-way ANOVA | F(3, 19) = 5.24 | p = 0.005 | con | p < 0.001 | n = 4 animals / group; | | UG | | | | | 80 dB SPL | n.s. | 9 slices / group | | | | | | | 100 dB SPL | n.s. | | 120 dB SPL p < 0.001 con vs. 120 dB SPL SPL p < 0.01 $con\ vs.\ 80\ dB\ SPL\quad p<0.01$ con vs. 100 dB 1 #### Supplementary Table 3 Statistical information of the supplementray information | | | Statistic al test | Test
value | Degrees
of
freedom | p-value | Post-hoc
test with
p-value | n-number | |---------------|-----------|-------------------|--------------------|--------------------------|----------|----------------------------------|--| | S Fig. 4B | | | | rrections | | p-value | con n = 10 slices
80 dB SPL n = 13 slices
100 dB SPL n = 11 slices
120 dB SPL n = 15 slices | | SFig.
5A-D | | | | | | | n = 4-5 animals /group | | S Fig. 5E | δGABAA-R | 1-way
ANOVA | F(3, 14)
= 0.22 | | p = 0.88 | | con; 80 dB SPL n = 5 animals
100 dB SPL; 120 dB SPL n = 4
animals | | S Fig. 5F | α1GABAA-R | 1-way
ANOVA | F(3, 16)
= 2.08 | | p = 0.14 | | n = 5 animals / group
2-3 repetitions |