C-reactive protein stimulates nicotinic acetylcholine receptors to control ATP-mediated monocytic inflammasome activation

Katrin Richter^{1,*,†}, Sabrina Sagawe^{1,†}, Andreas Hecker¹, Mira Küllmar¹, Ingolf Askevold¹, Jelena Damm¹, Sarah Heldmann¹, Michael Pöhlmann², Sophie Ruhrmann², Michael Sander², Klaus-Dieter Schlüter³, Sigrid Wilker¹, Inke R. König^{4,5}, Wolfgang Kummer⁶, Winfried Padberg¹, Arik J. Hone⁷, J. Michael McIntosh⁷⁻⁹, Anna Teresa Zakrzewicz¹, Christian Koch², and Veronika Grau¹

¹Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, German Centre for Lung Research (DZL), Giessen, Germany,

²Department of Anesthesiology and Intensive Care Medicine, Justus-Liebig-University Giessen, Giessen, Germany,

³Physiological Institute, Justus-Liebig-University Giessen, Giessen, Germany,

⁴Institute of Medical Biometry and Statistics, University of Luebeck, Luebeck, Germany,

⁵Airway Research Center North (ARCN), German Center for Lung Research (DZL), Giessen, Germany,

⁶Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, German Centre for Lung Research, Giessen, Germany,

⁷Department of Biology, University of Utah, Salt Lake City, UT, United States,

⁸George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, United States,

⁹Department of Psychiatry, University of Utah, Salt Lake City, UT, United States,

[†]These authors have contributed equally to this work.

*Correspondence:

Katrin Richter, Justus-Liebig-University of Giessen, Department of General and Thoracic Surgery, Laboratory of Experimental Surgery, Feulgenstr. 10 – 12, D-35392 Giessen; Tel. +49 641 985 45510; Fax: +49 641 985 44769;

E-mail address: Katrin.Richter@chiru.med.uni-giessen.de

Supplementary Material includes Figures S1 - S4, Table S1 and Table S2.

Figure S1

FIGURE S1. Levels of CRP do not negatively correlate with IL-6 levels in trauma patients. A monocentric prospective clinical study was performed on patients suffering from multiple traumata. Plasma levels of IL-6 were measured at daily intervals from the day of admission (day 0) until day 4 after trauma and a correlation analysis was performed with CRP values obtained one day earlier. (A) IL-6 at day 1 versus CRP at day 0, (B) IL-6 at day 2 versus CRP at day 1, (C) IL-6 at day 3 versus CRP at day 2, (D) a positive correlation was seen for IL-6 at day 4 versus CRP at day 3. Linear regression analysis, r = correlation coefficient, CV = coefficient of variation.

Figure S2

FIGURE S2. Levels of CRP do not negatively correlate with IL-18 levels in trauma patients. A monocentric prospective clinical study was performed on patients suffering from multiple traumata. Plasma levels of IL-18 were measured at daily intervals from the day of admission (day 0) until day 4 after trauma and a correlation analysis was performed with CRP values obtained one day earlier. (A) IL-18 at day 1 versus CRP at day 0, (B) IL-18 at day 2 versus CRP at day 1, (C) IL-18 at day 3 versus CRP at day 2, (D) a positive correlation was seen for IL-18 at day 4 versus CRP at day 3. Linear regression analysis, r = correlation coefficient, CV = coefficient of variation.

Figure S3

FIGURE S3. Levels of CRP do not negatively correlate with TNF- α levels in trauma patients. A monocentric prospective clinical study was performed on patients suffering from multiple traumata. Plasma levels of TNF- α were measured at daily intervals from the day of admission (day 0) until day 4 after trauma and a correlation analysis was performed with CRP values obtained one day earlier. (A) TNF- α at day 1 versus CRP at day 0, (B) TNF- α at day 2 versus CRP at day 1, (C) TNF- α at day 3 versus CRP at day 2, (D) a positive correlation was seen for TNF- α at day 4 versus CRP at day 3. Linear regression analysis, r = correlation coefficient, CV = coefficient of variation.

Figure S4

FIGURE S4. Levels of CRP do not negatively correlate with HMGB1 (high mobility group box 1 protein) levels in trauma patients. A monocentric prospective clinical study was performed on patients suffering from multiple traumata. Plasma levels of HMGB1 were measured at daily intervals from the day of admission (day 0) until day 4 after trauma and a correlation analysis was performed with CRP values obtained one day earlier. (A) HMGB1 at day 1 versus CRP at day 0, (B) HMGB1 at day 2 versus CRP at day 1, (C) HMGB1 at day 3 versus CRP at day 2, (D) HMGB1 at day 4 versus CRP at day 3. Linear regression analysis, r = correlation coefficient, CV = coefficient of variation.

Variables							
Score	IL-1β	n	r	CV	р		
APACHE II	day 0	38	-0.15	2%	0.38		
SOFA	day 0	38	-0.23	5%	0.18		
APACHE II	day 1	36	0.03	0%	0.86		
SOFA	day 1	36	-0.11	1%	0.53		
APACHE II	day 2	31	-0.13	2%	0.49		
SOFA	day 2	31	-0.24	6%	0.21		
APACHE II	day 3	23	-0.49	24%	0.022		
SOFA	day 3	23	-0.53	28%	0.011		
APACHE II	day 4	21	-0.56	31%	0.01		
SOFA	day 4	21	-0.47	22%	0.035		

TABLE S1. Correlation analyses of disease severity scores (day 0) with IL-1 β levels (day 0 - day 4).

APACHE II, acute physiology and chronic health evaluation score; n, number of patients; p, p-value; r, correlation coefficient; CV, coefficient of variation; SOFA, sequential organ failure assessment score.

TABLE S2. Correlation analyses of disease severity scores (day 0) with CRP levels (day 0 - day 4).

Variables							
Score	CRP	n	r	CV	р		
APACHE II	day 0	38	0.035	0%	0.84		
SOFA	day 0	38	0.12	1%	0.47		
APACHE II	day 1	36	-0.029	0%	0.87		
SOFA	day 1	36	0.091	1%	0.6		
APACHE II	day 2	31	-0.023	0%	0.9		
SOFA	day 2	31	0.026	0%	0.89		
APACHE II	day 3	23	0.2	4%	0.38		
SOFA	day 3	23	0.23	5%	0.29		
APACHE II	day 4	21	0.063	0%	0.79		
SOFA	day 4	21	0.08	1%	0.74		

APACHE II, acute physiology and chronic health evaluation score; n, number of patients; p, p-value; r, correlation coefficient; CV, coefficient of variation; SOFA, sequential organ failure assessment score.