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Supplementary Materials 
 

HLA peptidomics datasets 

Publicly available HLA-I peptidomics datasets from several recent studies in humans were 

considered in this work (1–12). All HLA-I peptidomics datasets were analyzed with our 

mixture model algorithm (MixMHCp) to identify and annotate HLA-I binding motifs, as 

described in our previous studies (1,13). All motifs were manually reviewed to eliminate cases 

where motifs of different alleles could not be separated. Larger numbers of motifs than the 

number of alleles were sometimes needed to identify motifs supported by few peptides (e.g., 

HLA-C motifs). Samples where the motifs could not be annotated were only considered in the 

list of peptides, but not in the list of interactions reported in Figure 1 (the same applies for 

samples where the HLA-I typing information was not available). For ref. (10) the raw MS data 

were reprocessed and were not filtered with existing predictors. For ref. (5) , the unfiltered list 

of peptides was kindly provided to us by the authors and motifs representing endogenous HLA-

I alleles (i.e., HLA-C04:01 and HLA-B35:03) and the peptides associated to such motifs were 

identified with MixMHCp. 

Recent HLA-II peptidomics datasets were included in the analysis of the number of class II 

peptides (3,14–17). Since allelic restriction was in general not known and is more difficult to 

predict, these data were not included in the list of HLA-II ligand interactions, only in the list 

of peptides in Figure 1. 

 

IEDB data  

IEDB data were downloaded on March 8, 2018 (18). All non-negative data were considered 

here (i.e., “Positive-High”, “Positive-Intermediate”, “Positive-Low” and “Positive”). MS data 

were identified based on “ligand presentation” identifier. All the other data (mainly binding 

affinity assays) were classified as in vitro data. IEDB data were combined with the HLA 

peptidomics data from the studies mentioned above and the cumulative lists of unique peptides 

and unique interactions are displayed in Figure 1 as a function of time (years). When computing 

the number of interactions, only interactions with full information about the HLA allele (e.g., 

HLA-A01:01) were considered. 

 

HLA-I ligand predictor based on Position Weight Matrices 



Here we recall a method to build PWMs describing the binding specificity of HLA-I molecules. 

This approach has been used in the past by different groups (19–22), including ourselves (2), 

but the description of the different steps is often scattered across different publications. 

Therefore we thought it may be useful to review the mathematical aspects of this method, 

which may also help understand the discussion about potential biases in HLA-I ligand datasets. 

Let 𝑋 = (𝑋$, … , 𝑋') be the set of P peptides of length L, i.e. 𝑋) = *𝑋)$, … , 𝑋)+,, interacting 

with a given HLA-I molecule. Matrices describing the frequency of amino acid a at position l 

are computed as:  
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where 𝛿.,8  stands for the standard Kronecker symbol and is equal to 1 if a=b and 0 otherwise, 

𝑙 = 1,… , 𝐿 standing for the positions along the peptides and 𝑎 = 1,… ,20, standing for the 

different amino acids.  

Redundant sequences: correction for redundant sequences can be done in different ways (21). 

For instance, each sequence Xp can be given a weight wp, corresponding to the inverse of the 

number of sequences in X with identity with Xp above a certain threshold. Similarly, sequences 

can be first clustered and then each sequence within a cluster receives a weight inversely 

proportional to the size of the cluster. The PWM is then computed as 𝑀.
/ = $

'eff
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with 𝑃eff = ∑ 𝑤)'
)7$ . 

Pseudocounts: pseudocounts represent a way of smoothing the amino acid frequencies and are 

especially important for low frequency amino acids. They are equivalent to priors in Maximum 

Likelihood approaches (technically the exponent of a Dirichlet prior corresponds to a flat 

pseudocount). In its simplest form, flat pseudocounts can be used and the PWM becomes 𝑀B./ =
'effCD6 EF/HI

'effEF
. A more powerful approach consists of using the BLOSUM62 matrix. The main 

idea is that if a given amino acid b is observed frequently at a given position, the pseudocounts 

should be larger for amino acids that are similar to b. This idea can be quantified as 𝑀B./ =
'effCD6 EF∙KD6

'effEF
, with 𝑔./ = ∑ 𝑀8

/HI
87$ 𝑞8→., where 𝑞8→. represents the transition probability of 

amino acid b into amino acid a, as given by the BLOSUM matrix (23). 

Background frequencies: the final PWM to use as a predictor is given by 𝑀O./ =
CBD6

PQ(.)
, with fr(a) 

being the background frequency of amino acid a (typically including also the pseudocount 

corrections, for consistency). The score of a new peptide Y=(Y1,…YL) is then given by 



∏ 𝑀OS6
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/7$ , or alternatively as ∑ log	(𝑀OS6
/ )+

/7$  (pseudo-counts ensure that all entries of 𝑀O are 

larger than zero). 

 

Clustering HLA-I motifs 

Position Weight Matrices for each HLA-I allele were built from all alleles with available 

ligands (9-mers only). When not enough data were available from unfiltered HLA 

peptidomics samples (<200 peptides), MS data from IEDB have been included. For alleles 

with few (<20 peptides) or no MS data available, in vitro binding data from IEDB have been 

used (stars in Figure 2 and 3). Pearson correlation coefficient between 180-dimensional 

vectors representing each PWM was computed for each pair of HLA-A, respectively HLA-B 

and HLA-C alleles. Hierarchical clustering (hclust in R, method=”ward.D2”) was applied 

using 1 minus the correlation coefficient as the distance between PWMs in the clustering 

algorithm. Supertypes were used as defined in (24).   

 

 

  



Supplementary Figures 

 
Figure S1: Comparison of HLA-C motifs obtained by deconvolution of pooled HLA 

peptidomics data (left) and HLA peptidomics profiling of cell lines with transfected soluble 

HLA-C alleles  (right). 



 
 

Figure S2: Results of the motif deconvolution with MixMHCp  on HEK293 cell line HLA 

peptidomics data from (11). This cell line is homozygous for all HLA-I alleles (HLA-A03:01, 

HLA-B07:02, HLA-C07:02). Four motifs are needed to see the motif for HLA-C07:02. 
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