
Supplementary Material:
Information content in stochastic pulse
sequences of intracellular messengers

1 SUPPLEMENTARY CALCULATIONS

1.1 Properties of the model in the Poisson and the GNF limits

The model presented in the paper is characterized, on one hand, by the following probability
density that, given that a pulse occurred at time 0, the first subsequent pulse occurs at time, t+ Tcell:

p(t|λ) = λ(1− e−ρt) exp(−
∫ t

0
λ(1− e−ρt

′
)dt′). (S1)

In the model of Skupin and Falcke (2007) and here, the inter-spike time is the sum, t+ Tcell, where
Tcell is a (fixed) determinisitc component and t a stochastic one. The other component of our model
is the relation between T ≡ 〈t〉|t|λ and the external ligand concentration, C. To this end we use the
relationship introduced in Thurley et al. (2014) to explain various experimental observations:

T ≡ 〈t〉|t|λ = A exp(−BC), (S2)

where 〈·〉|t|λ represents the mean over the distribution, p(t|λ). We here derive some properties of
the model in the two limits that we are interested in: the Global Negative Feedback (GNF) one
which is defined by x ≡ λ/ρ� 1 and the Poisson limit which is defined by x� 1. As we show in
what follows, even if we consider a range of values for λ, if A and B are fixed, ρ can always be
chosen so that each of these limits hold over all the range of λ values.

1.1.1 Relationship between the “firing” rate, λ, and the external ligand concentration, C

We show here that Eq. (S2) implies that:

λ = α exp(βC), (S3)

in the GNF and Poisson limits, with α and β fixed parameters that can be functions of ρ.

As it is clear from Eq. (S1), for a given value of λ and in the x� 1 limit, the model reduces to a
Poisson process for which the distribution, p(t|λ), is exponential with T = 1/λ. Introducing this
last relation in Eq. (S2) we obtain:

λ =
1

A
eBC , forx� 1. (S4)

1
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To relate λ and C in the x� 1 (GNF) limit we use the result of Skupin and Falcke (2007) which
shows that the mean, T , for the model of Eq. (S1) is given by:

T =
exx1−x

λ
(Γ(x)− Γ(x, x)) , (S5)

where Γ(x) is the Gamma function, Γ(s, t) is the upper incomplete Γ function and x = λ/ρ. The
difference in the r.h.s of Eq. (S5) can be rewritten as:

Γ(x)− Γ(x, x) = γ(x, x), (S6)

with γ(s, t) the lower incomplete Γ function. We now prove that:

lim
x→∞

ex

xx
γ(x+ 1, x)−

√
π

2
x = 0. (S7)

In fact, using the generalized Laplace method we obtain:

γ(x+ 1, x) =

∫ x

0
zxe−zdz ∼ xxe−x

∫ ∞
0

e−
1

2x (z−x)2

dz =
1

2
xxe−x

√
2πx, (S8)

for x = λ/ρ large enough from which Eq. (S7) immediately follows. This in turn implies that:

γ(x, x) = xx−1e−x + x−1γ(x+ 1, x) = xx−1e−x + xx−1e−x
√
πx

2
, x� 1. (S9)

Combining Eqs. (S9), (S5) and (S6) we obtain:

T =
1

λ

(
1 +

√
πx

2

)
≈
√
πx

2λ2
=

√
π

2λρ
, x� 1. (S10)

Combining Eqs. (S2) and (S10) we obtain:

λ =
π

2ρA2
e2BC , forx� 1. (S11)

Eqs. (S4) and (S11) imply that, in both limits, it is:

λ = αeβC , (S12)

with α = π/(2ρA2) and β = 2B for the GNF limit and α = 1/A and β = B for the Poisson one.
Eqs. (S4) and (S11) also imply that, for fixed values of A, B and ρ, the value of the external ligand,
C, univocally determines the value of the “firing” rate, λ. If, as done later, we consider that C can
take on any value over the interval, [0, CM ], Eq. (S12) then implies that λ can take on any value
in the range α ≤ λ ≤ α exp(βCM ). By choosing ρ so that α/ρ = π/(2ρ2A2) � 1 we guarantee
that the GNF limit, x = λ/ρ� 1, holds ∀λ ∈ [α, α exp(βCM )] with α = π/(2ρA2) and β = 2B.
Likewise, by choosing ρ so that α exp(βCM )/ρ = exp(BCM )/(Aρ)� 1, we guarantee that the
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Givré and Ponce Dawson Supplementary Material

Poisson limit, x� 1, holds ∀λ ∈ [α, α exp(βCM )] with α = 1/A and β = B. Thus, ρ can always
be chosen so that each of the two limits of interest hold over all the corresponding range of λ values.

1.1.2 Relationship between the mean and standard deviation of the stochastic
component of the inter-pulse time in the GNF and the Poisson limits

As shown in Skupin and Falcke (2007), the mean of the stochastic part of the inter-pulse time, T ,
is given by Eq. (S5), while its variance is given by:

σ2 = 〈t2〉 − T 2 = 2ex2F2

(
x x

1 + x 1 + x
;−x

)
− T 2, (S13)

where 2F2 is the (2,2) generalized hypergeometric function. For both limits of the model, the mean
of the stochastic part, T , and the standard deviation, σ, are related by:

σ = kT. (S14)

This relationship is trivial in the Poisson limit (x� 1) for which T = σ = 1/λ and k = 1. Outside
this limit, the relationship was obtained numerically in Skupin and Falcke (2007). As we show now,

it can be derived analytically for x� 1 as well yielding k =
√

4
π − 1.

In order to determine k = σ/T for the x� 1 limit we will calculate:

1 +
σ2

T 2
= lim

x→∞
〈t2〉
T 2

= lim
x→∞

2ex2F2

(
x x

1 + x 1 + x
;−x

)
(exx1−x (Γ(x)− Γ(x, x)))2

. (S15)

We have already proved that T = exx1−x(Γ(x)−Γ(x, x)) ≈
√
πx/2+1 for x� 1 (see Eq. (S10)).

We now compute the numerator of Eq. (S15). To this end we use the integral transformation of
Euler (see e.g.Slater (1966)):

A+1FB+1

(
a1 ... aA c

b1 ... bB d
; z

)
=

Γ(d)

Γ(c)Γ(d− c)

∫ 1

0
tc−1(1− t)d−c−1

AFB

(
a1 ... aA
b1 ... bB

; tz

)
dt.

(S16)
Taking into account that Γ(x+1)

Γ(x)Γ(1) = x, applying this formula twice to go from 0F0 to 2F2 we obtain:

2F2

(
x x

1 + x 1 + x
;−x

)
= x2

∫ 1

0

∫ 1

0
(tt′)x−1

0F0

(
;−tt′x

)
dtdt′. (S17)

Given that 0F0 (;−tt′x) = e−tt
′x, Eq. (S17) becomes:

2F2

(
x x

1 + x 1 + x
;−x

)
= x2

∫ 1

0

∫ 1

0
(tt′)x−1e−tt

′xdtdt′. (S18)
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This equation can be solved via the substitution:

u = ln

(√
t

t′

)
, (S19a)

v =
√
tt′, (S19b)

which Jacobian is 2|v|. The limits of integration, on the other hand, get transformed into 0 < v < 1,
ln(v) < u < − ln(v). Thus, the integral in the r.h.s of Eq. (S18) can be rewritten as:∫ 1

0

∫ 1

0
(tt′)x−1e−tt

′xdtdt′ =

∫ 1

0

∫ − ln(v)

ln(v)
(v2)x−1e−v

2x2vdudv =

∫ 1

0
(v2)x−1e−v

2x2v(−2 ln(v))dv.

(S20)
Rewriting 2 ln(v) = ln(v2) and introducing the substitution w = v2, we can rewrite Eq. (S20) as:∫ 1

0

∫ 1

0
(tt′)x−1e−tt

′xdtdt′ =

∫ 1

0
(w)x−1e−wx(− ln(w))dw (S21)

Thus, the limit of Eq. (S15) is equivalent to:

lim
x→∞

2exx2
∫ 1

0 (w)x−1e−wx(− ln(w))dw
π
2x+

√
2πx+ 1

= lim
x→∞

4x
∫ 1

0 (w)x−1e(1−w)x(− ln(w))dw

π
. (S22)

Thus, proving that

lim
x→∞

x

∫ 1

0
(w)x−1e(1−w)x(− ln(w))dw = 1, (S23)

is enough to demonstrate that 1 + σ2/T 2 → 4/π for x � 1 and, therefore, that k = σ/T =√
4
π − 1 ∼ 0.523. In order to prove Eq. (S23) we use the modified Laplace method. With this in

mind we can observe that the integrand in this equation tends to 0 for every value of w outside a
neighborhood of w = 1. Thus, we can use the approximation − ln(w)

w ∼ 1 − w + O((1 − w)2).
Inserting in into Eq. (S23) we obtain:

x

∫ 1

0
wx−1e(1−w)x(− ln(w))dw ∼

∫ 1

0
wxe(1−w)xx(1−w)dw =

∫ 1

0
ex(ln(w)+(1−w))x(1−w)dw.

(S24)
Approximating ln(w) + (1− w) ∼ −1

2(w − 1)2 we arrive at:

x

∫ 1

0
(w)x−1e(1−w)x(− ln(w))dw ∼

∫ 1

0
e−

1
2x(w−1)2

x(1− w)dw, (S25)

which can be solved intoducing the change of variables y = 1
2x(w − 1)2. In this way we obtain

x

∫ 1

0
(w)x−1e(ln(w)+(1−w))x(− ln(w))dw ≈

∫ 1
2x

0
e−ydy ≈

∫ ∞
0

e−ydy = 1, (S26)
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Givré and Ponce Dawson Supplementary Material

and so we prove Eq. (S23).

In summary we have proved here that in the GNF and the Poisson limits T and σ are related by

Eq. (S14) with k = 1 in the Poisson case and k =
√

4
π − 1 in the GNF one.

1.2 Quantifying the information contained in a pulse.

Here we show the calculation of the information contained in the time separation between two
successive pulses. More specifically, we compute the mutual information between t and C which is
the same as the mutual information between t and λ:

I(C, t) = I(λ, t) =

∫∫
pλ(λ)p(t|λ) log2 (p(t|λ)/p(t)) dtdλ

=

∫
pλ(λ)

∫
p(t|λ) log2 (p(t|λ)) dtdλ−

∫
pt(t) log2 (pt(t)) dt

≡ −H(t|λ) +H(t), (S27)

where
pt(t) =

∫
p{t,λ}(t, λ)dλ =

∫
p(t|λ)pλ(λ)dλ, (S28)

with p{t,λ} the joint probability density of t and λ. Now, given that λ is a function of the ligand
concentration, which typically changes with time, λ will change as well. The calculations we are
going to perform are good either for constant λ or if λ varies slowly enough with respect to 〈t〉|t|λ.
In this way, we use Eq. (S3) to relate the λ probability density, pλ, and that of the external ligand
concentration, pC , by:

pλ(λ) =
1

αβ
e−βCpC(C) =

1

λβ
pC

(
1

β
ln

(
λ

α

))
. (S29)

We first compute H(t). Assuming that λ is constant, we write:∫ t

0
−λ
(
1− exp(−ρt′)

)
dt′ = −λt− λ

ρ
(exp(−ρt)− 1) , (S30)

and

p(t|λ) = −∂e
λ
(
−t− 1

ρ (e−ρt−1)
)

∂t
. (S31)

Defining τ = (−t− 1
ρ(e−ρt − 1)) we rewrite

pt(t) =

∫
−∂e

λτ(t)

∂t
pλ(λ)dλ = −∂Mλ(τ(t))

∂t
≡ −M ′λ, (S32)

where we have introduced the definition:

Mλ(τ) =

∫
eλτpλ(λ)dλ, (S33)
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which is the moment-generating function. We then rewrite H in terms of Mλ as:

H(t) =
1

ln(2)

(
−
∫
−M ′λ(τ) ln(−M ′λ(τ))dt

)
, (S34)

where the prime indicates the derivative with respect to t (see Eq. (S32)). Given that −M ′λ(τ) =

−∂Mλ(τ)
∂τ τ ′(t) = ∂Mλ(τ)

∂τ (−τ ′(t)) we rewrite Eq. (S34) as:

H(t) = − 1

ln(2)

(∫
−M ′λ(τ) ln

(
∂Mλ(τ)

∂τ

)
dt+

∫
−M ′λ(x) ln(−τ ′(t))dt

)
. (S35)

The last term in this equation can be written as:

1

ln(2)

∫
M ′λ(τ) ln(−τ ′(t))dt = − 1

ln(2)

∫
pt(t) ln(1−e−ρt)dt ≡ − 1

ln(2)
〈ln(1−e−ρt)〉|t. (S36)

Further changing the variable of integration from t to τ = −t− 1/ρ(exp(−ρt)− 1), we obtain:

H(t) =
1

ln(2)

(
−
∫ 0

−∞

∂Mλ(τ)

∂τ
ln

(
∂Mλ(τ)

∂τ

)
dτ − 〈ln(1− e−ρt)〉|t

)
, (S37)

where we have used τ(t = 0) = 0 and τ(t→∞)→ −∞.

We now compute H(t|λ). Taking into account Eqs. (S1) and (S30) we write:∫
p(t|λ) log2 (p(t|λ)) dt =

1

ln(2)

(
〈ln(λ(1− e−ρt))〉|t|λ − λ〈t〉|t|λ −

λ

ρ

(
〈e−ρt〉|t|λ − 1

))
.

(S38)
The term, 〈e−ρt〉|t|λ, can be rewritten as:∫ ∞

0
e−ρtλ(1−e−ρt)e−λt−

λ
ρ (e−ρt−1)dt =

∫ 1

0

λ

ρ
(1−u)e

λ
ρ ln(u)−λρ (u−1)du =

∫ 1

0

λ

ρ
(1−u)u

λ
ρ e−

λ
ρ (u−1)du,

(S39)
where we have introduced u = exp(−ρt). Further replacing u by v = λu/ρ, we obtain:

〈exp(−ρt)〉|t|λ =

∫ 1

0

λ

ρ
(1− u)u

λ
ρ e−

λ
ρ (u−1)du = e

λ
ρ

(∫ λ
ρ

0

(vρ
λ

)λ
ρ
e−vdv −

∫ λ
ρ

0

(vρ
λ

)λ
ρ+1

e−vdv

)

=
e
λ
ρ

(λρ )
λ
ρ

γ

(
λ

ρ
+ 1,

λ

ρ

)
− e

λ
ρ

(λρ )
λ
ρ+1

γ

(
λ

ρ
+ 2,

λ

ρ

)
, (S40)
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where γ(x, y) is the lower incomplete Gamma function. We rewrite γ(λρ + 2, λρ ) = (λρ + 1)γ(λρ +

1, λρ )− (λρ )
λ
ρ+1e−

λ
ρ and Eq. (S40) becomes:

〈exp(−ρt)〉|t|λ = − e
λ
ρ(

λ
ρ

)λ
ρ+1

(
γ

(
λ

ρ
+ 1,

λ

ρ

)
−
(
λ

ρ

)λ
ρ+1

e−
λ
ρ

)
. (S41)

1.2.1 The λ/ρ� 1 limit

We now advance with the computation assuming that x = λ/ρ� 1. Combining Eqs. (S7) (which
holds for x� 1) and (S41) we obtain

λ

ρ
〈exp(−ρt)〉|t|λ ∼ −

√
π

2

λ

ρ
+
λ

ρ
, (S42)

for λ/ρ� 1. Inserting Eqs. (S10) and (S42) in Eq. (S38) we obtain:

∫
p(t|λ) log2 (p(t|λ)) dt ≈ 1

ln(2)

(
〈ln(λ(1− e−ρt))〉|t|λ −

√
πλ

2ρ
− 1 +

√
π

2

λ

ρ
− λ

ρ
+
λ

ρ

)

=
1

ln(2)

(
ln(λ)− 1 + 〈ln(1− e−ρt)〉|t|λ

)
. (S43)

The first term in Eq. (S27) is then given by:

−H(t|λ) ≡
∫
pλ(λ)

∫
p(t|λ) log2 (p(t|λ)) dtdλ

=

∫
pλ(λ)

1

ln(2)

(
ln(λ)− 1 + 〈ln(1− e−ρt)〉|t|λ

)
dλ

=
1

ln(2)

(
〈ln(λ)〉|λ − 1 + 〈ln(1− e−ρt)〉|t

)
, (S44)

where the mean 〈·〉|λ is computed using the distribution, pλ, and 〈·〉|t using the distribution, pt,
defined in Eq. (S28). The last term in this equation cancels out with the similar one coming from
H(t) when computing I (see Eqs. (S27), (S37) and (S44)) and we have:

I(λ, t) =
1

ln(2)

(
−
∫ 0

−∞

∂Mλ(τ)

∂τ
ln

(
∂Mλ(τ)

∂τ

)
dτ − 1 + 〈ln(λ)〉|λ

)
, (S45)

with M given by Eq. (S33).
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1.2.2 The λ/ρ� 1 limit.

We now compute Eq. (S27) in the limit, λ/ρ� 1, for which the model can be approximated by a
Poisson process with the probability :

p(t|λ) = λe−λt (S46a)

λ = αeβC (S46b)

In this case, Eq. (S38) becomes:∫
p(t|λ) log2 (p(t|λ)) dt =

1

ln(2)
(ln(λ)− 1) (S47)

Therefore:
H(t|λ) =

1

ln(2)
(1− 〈ln(λ)〉|λ) . (S48)

Eq. (S37), on the other hand, becomes

H(t) =
1

ln(2)

(
−
∫ 0

−∞

∂Mλ(τ)

∂τ
ln

(
∂Mλ(τ)

∂τ

)
dτ

)
, (S49)

with M given by Eq. (S33) as before. Thus, the information in this limit can also be written as in
Eq. (S45), i.e., as in the λ/ρ � 1 limit. Summarizing, the information has the same expression
(Eq. (S45)) in both limits. We can rewrite it using some constant, µ, which we will either take equal
to 〈λ〉 or to α to make all time variables dimensionless. Namely, we define τ̃ = µτ and λ̃ = λ/µ. In
this way, Eq. (S33) can be rewritten as:

Mλ(τ̃) =

∫
eλ̃τ̃pλ̃(λ̃)dλ̃, with pλ̃(λ̃) =

1

λ̃β
pC

(
1

β
ln

(
λ̃µ

α

))
, (S50)

and Eq. (S45) becomes:

I(λ, t) =
1

ln(2)

(
−
∫ 0

−∞

∂Mλ

∂τ̃
ln

(
∂Mλ

∂τ̃

)
dτ̃ − 1 + 〈ln

(
λ̃
)
〉|λ̃

)
. (S51)

1.2.3 Dependence of the information on the parameters of the problem

If we choose µ = α to define the dimensionless time variables, Eq. (S12) implies that α̃ =
exp(βC). We then deduce from Eqs. (S50)–(S51) that, at least in the two limits that we are studiying,
I does not depend on α. Similarly, if we choose µ = α exp(β〈C〉, it is λ̃ = exp(β(C−〈C〉) and we
then conclude that I does not depend on 〈C〉. The dependence on ρ is more subtle and we discuss
it in the main paper. In order to study the dependence on β, we now make an assumption for the
distribution of C. Namely, we assume a uniform distribution over the interval [0, CM ]. In such a
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case it is:

pC(C) =

{
1
CM

, if 0 ≤ C ≤ CM ,

0, otherwise,
(S52)

so that

pλ(λ) =

{
1

CMβλ , if α ≤ λ ≤ α exp(βCM ),

0, otherwise.
(S53)

Then, ∂Mλ/∂τ̃ (Eq. (S33) with τ̃ = µτ , µ = α) is given by:

∂Mλ

∂τ̃
=

∫ exp(βCM )

1
eλ̃τ̃

1

CMβ
dλ̃ =

1

CMβτ̃

(
exp

(
τ̃ eβCM

)
− exp (τ̃)

)
(S54)

On the other hand:
〈ln(λ̃)〉 = β〈C〉 = β

CM
2

(S55)

Then, the only thing left to calculate I in Eq. (S51) is:

HM ′λ ≡ −
∫ 0

−∞

∂Mλ

∂τ̃
ln

(
∂Mλ

∂τ̃

)
dτ̃ . (S56)

We define

g(τ̃) ≡ βCM
∂Mλ

∂τ̃
=
eτ̃ e

CMβ − eτ̃

τ̃
, (S57)

which can be rewritten as:

g(τ̃) =
2

τ̃
eτ̃

eβCM+1
2 sinh

(
τ̃
eβCM − 1

2

)
. (S58)

Thus:

ln(g(τ̃)) = ln

(
∂Mλ

∂τ̃

)
+ln(βCM ) = ln(2)−ln(τ̃)+τ̃

eβCM + 1

2
+ln(sinh(τ̃

eβCM − 1

2
)). (S59)

Given Eqs. (S32))-(S33) and that τ̃(t = 0) = 0 and τ̃(t→∞)→ −∞, then

−
∫ ∞

0
f(t)

∂Mλ

∂t
dt =

∫ 0

−∞
f(t(τ̃))

∂Mλ

∂τ̃
dτ̃ =

∫ ∞
0

f(t)pt(t)dt = 〈f〉|t, (S60)
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for any function f(t) (or of τ̃ through the relationship τ̃ = µ(−t− 1
ρ(e−ρt − 1))). Thus, I can be

written as:

I(λ, t) =
1

ln(2)

(
−
∫ 0

−∞

∂Mλ

∂τ̃
ln(g(τ̃))dτ̃ + ln(βCM )− 1 + β

CM
2

)
=

1

ln(2)

(
− ln(2) + 〈ln(τ̃)〉|t − 〈τ̃〉|t

eβCM + 1

2
− 〈ln(sinh(τ̃

eβCM − 1

2
))〉|t + ln(βCM )− 1 + β

CM
2

)
.

(S61)

Computing each term in this equation, taking special care of the τ̃ = 0 limit of integration, we
arrive at the following expression

I(λ, t) =
1

ln(2)

(
sinh(βCM )

βCM
+ ln

(
β
CM
2

)
− ln

(
eβCM − 1

2

)
− 1 + β

CM
2

)

− 1

βCM ln(2)

∫ 0

−∞

eζ

ζ
ln

(
eβCM sinh(ζe−βCM eβCM−1

2 )

sinh(ζ e
βCM−1

2 )

)
dζ,

(S62)

the last term of which we computed numerically using Mathematica. The result of this numerical
computation is shown in the main body of the paper where it may be observed that it is an increasing
function of βCM . Given that, in the GNF limit, β is twice as large as in the Poisson limit, I(C, t) is
always smaller in the latter than in the former limit. Given that I(C, t) does not depend on 〈C〉 (see
discussion at the beginning of Sec. 1.2.3), the dependence on βCM comes from the dependence of
I on the standard deviation of C, which, for a uniform distribution as the one we have considered,
is CM/

√
12. As we have already discussed, I(C, t) does not depend on the parameter, α. Eqs. (S3)

and (S27) then imply that it depends on the standard deviation of C through its product with the
parameter β. If instead of using the least informative distribution for C (uniform over an interval)
we consider that C can take on only one value (i.e., it is a δ function with zero variance) we obtain
I(t, C) = 0 in the two limits. We then expect that I(C, t) will increase with the product between β
and the standard deviation of C regardless of the distribution that we might consider for C. This
argument and the results we obtain for the information between the number of pulses and C in the
following sections lead us to think that I(C, t) is always larger in the GNF than in the Poisson limit.

1.3 Information contained in N � 1 pulses.

Now we look at the problem when there are many (N ) subsequent pulses. In order to perform
analytic calculations we will consider the limit N � 1. Basically, we are assuming that we observe
the system for a fixed time, ttot, such that ttot � (Tcell + T ). We then want to compute the mutual
information between N and the external ligand concentration, C, assuming fixed values of ρ, α and
β (or of A and B) as we have done before. To this end, we need to know the conditional probability
that N pulses occur during an observation time, ttot for a given value of C, i.e., p(N |C, ttot). The
problem at hand is an example of a renewal process Ross (2014). According to the Central Limit

10
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Theorem for this type of processes, for large enough N , it is:

p(N |C, ttot) ≈
(

2π
ttot

Tcell + T

σ2

(Tcell + T )2

)−1/2

exp

− (N − ttot
Tcell+T

)2

2 ttot
Tcell+T

σ2

(Tcell+T )2

 , (S63)

where both the mean, Tcell + T , and the standard deviation, σ, of the inter-pulse time, t, depend on
the external ligand concentration, C. In order to simplify the calculations, from now on we will
assume that Tcell � T . All the calculations can be performed in the same way as described here if
this assumption is not taken into account. Considering the simplification and given Eq. (S14) (which
holds for the Poisson and GNF limits), Eq. (S63) can be rewritten as:

p(N |C, ttot) = p(N |T, ttot) ≈
(

2πk2ttot
T

)−1/2

exp

(
−

(N − ttot
T )2

2k2ttot/T

)
. (S64)

For fixed values of ρ, α and β, the mean, T , is uniquely determined by C. In such a case, the
mutual information between N and C is the same as the information between N and T . We will
then compute the latter treating N as a continuous variable, namely:

I(C,N) = I(N, T ) = −
∫
p(N |ttot) log2 (p(N |ttot)) dN+∫∫

p(N |T, ttot)pT (T ) log2 (p(N |T, ttot)) dTdN,
(S65)

where pT (T ) is the probability density of the mean, T , which is to be derived from that of the ligand
concentration, pC(C), and

p(N |ttot) =

∫
p(N |T, ttot)pT (T )dT. (S66)

It is convenient to introduce the change of variables N̄ = N
ttot

, so that:

I(N, T ) = −
∫
p(N̄ |ttot) log2

(
p(N̄ |ttot)

)
dN̄+∫∫

p(N̄ |T, ttot)pT (T ) log2

(
p(N̄ |T, ttot)

)
dTdN̄, (S67a)

p(N̄ |T, ttot) =

√
ttotT

2πk2
exp

(
−

(N̄ − 1
T )2

2k2

ttotT

)
. (S67b)
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In order to compute the first term in Eq. (S67a) we assume that ttot is large enough so that we can
approximate:

p(N̄ |ttot) =

∫
1√
2πk2

ttotT

e
−

(N̄− 1
T

)2

2k2
ttotT pT (T )dT ≈

∫
δ(N̄ − 1

T
)pT (T )dT +O

(
1

ttot

)

=
1

N̄2
pT

(
1

N̄

)
+O

(
1

ttot

) . (S68)

The last equality is demonstrated in 1.3.1. In this way, the first term in Eq. (S67a) becomes:

−
∫
p(N̄ |ttot) log2

(
p(N̄ |ttot)

)
dN̄

≈ −
∫ (

1

N̄2
pT

(
1

N̄

)
+O

(
1

ttot

))
log2

(
1

N̄2
pT

(
1

N̄

)
+O

(
1

ttot

))
dN̄

= −
∫
pT (T ) (log2 (pT (T )) + 2 log2(T )) dT +O

(
1

ttot

)
= H(T )− 2〈log2(T )〉T ,

(S69)

with the entropy, H , as defined in Eq. (S27) and 〈·〉T the mean computed using the probability
density, pT . Then, remembering that the entropy of a normal distribution of standard deviation σ is
1
2 log2(2πeσ2), the second term in Eq. (S67a) can be written as:∫∫

p(N̄ |T, ttot)pT (T ) log2

(
p(N̄ |T, ttot)

)
dTdN̄ =

∫
pT (T )

∫
1√
2πk2

ttotT

e
−

(N̄− 1
T

)2

2k2
ttotT log2

 1√
2πk2

ttotT

e
−

(N̄− 1
T

)2

2k2
ttotT

 dN̄dT =

−1

2

∫
pT (T ) log2

(
2πe

ttotT
k2

)
dT = −1

2
log2

(
2πek2

ttot

)
− 1

2

∫
pT (T ) log2

(
1

T

)
dT.

(S70)

Inserting Eqs. (S69) and (S70) into Eq. (S67a) we finally obtain:

I(T,N) = H(T )− 3

2
〈log2(T )〉T −

1

2
log2

(
2πek2

ttot

)
. (S71)

Under the assumption that the mean, T , is a function of the external ligand concentration, C, (see
Eq. (S2)), Eq. (S71) implies that, for any given distribution, pC(C) or, equivalently, pT (T ), the
only difference in I(T,N) between the Poisson and the GNF limits of the model is given by k.
We recall that k, the constant of proportionality between standard deviation, σ, and the mean,
T , of (the stochastic part of) the interpulse time (see Eq. (S14), is 1 in the Poisson limit and√

4/π − 1 ≈ 0.523 in the GNF one. Thus, the difference between the information for the GNF

12
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and the Poisson limits is 0.936 regardless of the distribution that we might consider for C. There is
an extra term in I(T,N) of O( 1

3√ttot
) which is related to the residual skewness of the probability

distribution p(N̄ |T, ttot), that is explored in section 1.3.2. Adding this term Eq. (S71) becomes:

I(T,N) = H(T )− 3

2
〈log2(T )〉T −

1

2
log2

(
2πek2

ttot

)
+O

(
1

3
√
ttot

)
. (S72)

Assuming that C is uniformly distributed as before (Eq. (S52)) and that T and C are related by:
A exp(−BC) (see Eq. (S2)) we obtain:

pT (T ) =

{
1

CMBT , if A exp(−BCM ) ≤ T ≤ A,

0, otherwise,
(S73)

so that 1/T = CMBpT (T ) for the values of T for which pT is not zero. This implies that

H(T ) = −
∫
pT (T ) log2(pT )dT =

∫
pT (T ) log2(CMBT )dT = log2(CMB) + 〈log2(T )〉T ,

(S74)
so that Eq. (S71) becomes:

I(T,N) = log2(CMB)− 1

2
〈log2(T )〉T −

1

2
log2

(
2πek2

ttot

)
. (S75)

The mean, 〈log2(T )〉T , can readily be computed using Eq. (S73). We obtain:

〈log2(T )〉T = log2(A)− BCM
2 ln(2)

. (S76)

Inserting Eq. (S76) into Eq. (S75) we obtain:

I(T,N) = log2(ACMB)− BCM
2 ln(2)

− 1

2
log2

(
2πek2

ttot

)
. (S77)

Including the O( 1
3√ttot

) term, the final result can be written as:

I(T,N) = f(A,BCM ) +
1

2
log2

(
ttot
k2

)
+O

(
1

3
√
ttot

)
. (S78)
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1.3.1 Approximate calculation of p(N̄ |ttot)

We want to calculate approximately the function, p(N̄ |T, ttot), given by Eq. (S67b) for large
enough ttot. Performing a Fourier transform, F , (with respect to N̄ ) on it we obtain:

F

 1√
2π 1

ttotT
k2
e
−

(N̄− 1
T

)2

1
ttotT

k2

 =
1√
2π
e
i[ 1
ttotT

k2]ω
e
− 1

2ttotT
k2ω2

∼

1√
4π
ei[

1
T ]ωe

− 1
2ttotT

k2ω2

∼ 1√
4π
ei(

1
T )ω

(
1− k2ω2

2ttotT
+O

(
1

t2tot
)

))
.

(S79)

Antitransforming the last expression we obtain δ(N̄ − 1
T ) +O( 1

ttot
).

1.3.2 Going beyond the Central Limit Theorem

In Eq. (S64) (or, equivalenty, Eq. (S67b) we assumed that the probability density function of the
number of pulses, N , for given values of C and ttot could be approximated by a normal distribution.
This result is derived from the Central Limit Theorem. In this subsection we explore what happens
if we deform slightly the normal distribution to include some skewness. Without loss of generality
we will introduce a change of variables so that 〈N̄〉 = 0. Namely, we consider that the probability
density for the rescaled variable, N̄ = N/ttot is given by:

p(N̄ |T, ttot) ∼
1√

2πσ̄2
N

e
− N̄2

2σ̄2
N f

(
ϕ
N̄

σ̄N

)
, (S80)

instead of Eq. (S67b), where ϕ→ 0, f(0) = 1,
∫∞
−∞

1√
2πσ̄2

N

e
− N̄

2

σ̄2
N f(ϕ N̄σ ) = 1. A possible specific

f(ζ) could be 2Φ(ζ) with Φ the cumulative distribution function of the normal distribution. In this
way we would have the skew-normal distribution. Now we remind the readers that we are working
in the limit of large ttot so that that σ̄N ∼ O( 1√

ttot
). The actual probability density function for

the variable N , p(N |T, ttot), in the Poisson limit of the model is the Poisson distribution which
can be approximated by a normal distribution of the same variance. The skewness of the Poisson
distribution with variance, σ2

N ∼ ttot, as in the normal approximation of Eq. (S64)) satisfies:

S =
〈(N − 〈N〉)3〉

σ3
N

=
1

σN
∼ 1√

ttot
. (S81)

Given that σ2
N ∼ ttot, Eq. (S81) implies that 〈(N − 〈N〉)3〉 ∼ ttot so that:

〈(N̄ − 〈N̄〉)3〉 ∼ O
(

1

t2tot

)
. (S82)
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We now approximate the function f in Eq. (S80) by its Taylor expansion, f(x) ≈ 1 + a1x+ a2x
2 +

a3x
3, and compute:

〈N̄〉 ∼
∫ ∞
−∞

1√
2πσ̄2

N

e
− N̄

2

σ̄2
N f(

ϕ

σ̄N
N̄)N̄dN̄ =

(
σ̄N
ϕ

)

∫ ∞
−∞

1√
2πϕ2

e
− u

2

ϕ2 (1 + a1u+ a2u
2 + a3u

3)udu = (
σ̄N
ϕ

)[a1ϕ
2 + 3a3ϕ

4],

(S83)

〈N̄2〉 ∼
∫ ∞
−∞

1√
2πσ̄2

N

e
− N̄

2

σ̄2
N f(

ϕ

σ̄N
N̄)N̄dN̄ =

(
σ̄N
ϕ

)2

∫ ∞
−∞

1√
2πϕ2

e
− u

2

ϕ2 (1 + a1u+ a2u
2 + a3u

3)u2du = (
σ̄N
ϕ

)2[ϕ2 + 3a2ϕ
4],

(S84)

∫ ∞
−∞

1√
2πσ̄2

N

e
− N̄

2

σ̄2
N f(

ϕ

σ̄N
N̄)N̄3dN̄ =

(
σ̄N
ϕ

)3

∫ ∞
−∞

1√
2πϕ2

e
− u

2

ϕ2 (1 + a1u+ a2u
2 + a3u

3)u3du = (
σ̄N
ϕ

)3[3a1ϕ
4 + 15a3ϕ

6].

(S85)

The latter gives:

〈(N̄ − 〈N̄〉)3〉 = 〈N̄3〉 − 3〈N̄〉〈N̄2〉+ 2〈N̄〉3 ∼

(
σ̄N
ϕ

)3[(3a1ϕ
4 + 15a3ϕ

6)− 3(a1ϕ
2 + 3a3ϕ

4)(ϕ2 + 3a2ϕ
4) + 2(a1ϕ

2 + 3a3ϕ
4)3] ∼

(σ̄Nϕ)3[15a3 − 9a1a3 + 9a1a2 + 2a3
1] ∼ O((σ̄Nϕ)3).

(S86)

Considering that σ̄N ∼ O( 1√
ttot

), Eqs. (S82) and (S86) imply that ϕ ∼ O( 1
6√ttot

). Thus, when
computing the second term in the r.h.s. of Eq. (S67a) we would have to perform a calculation of the
form: ∫

1√
2πσ̄2

N

e
− N̄2

2σ̄2
N f

(
ϕ

σ̄N
N̄

)
log2

(
f

(
ϕ

σ̄N
N̄

))
dN̄ =

∫
1√

2πϕ2
e
− u2

2ϕ2 (1 + a1u+ a2u
2 + a3u

3) log2

(
1 + a1u+ a2u

2 + a3u
3
)
du ∼

1

ln(2)

∫
1√

2πϕ2
e
− u2

2ϕ2

(
a1u+

a2
1 + 2a2

2
u2

)
du ∼

1

ln(2)

(
a2

1 + 2a2

2
ϕ2

)
∼ O(ϕ2) ∼ O(

1
3
√
ttot

).

(S87)
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Givré and Ponce Dawson Supplementary Material

We then conclude that the error that is made when calculating the mutual information, I(C,N),
using the normal approximation of the probability density function, p(N |T, ttot), is ∼ O( 1

3√ttot
).

The simulations presented in the main body of the paper confirm this conclusion.
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