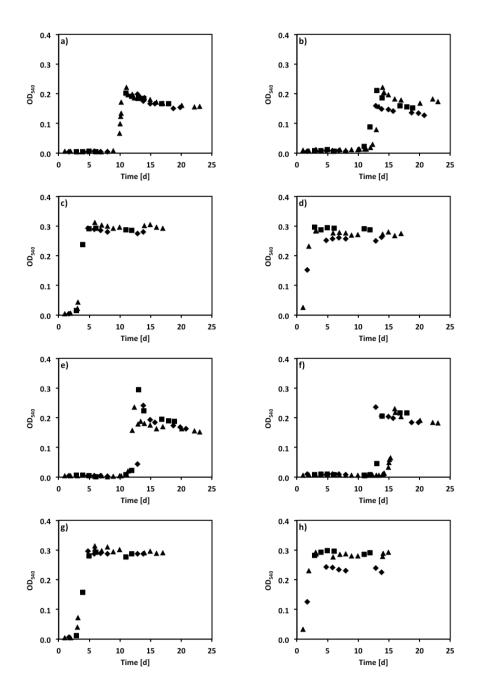
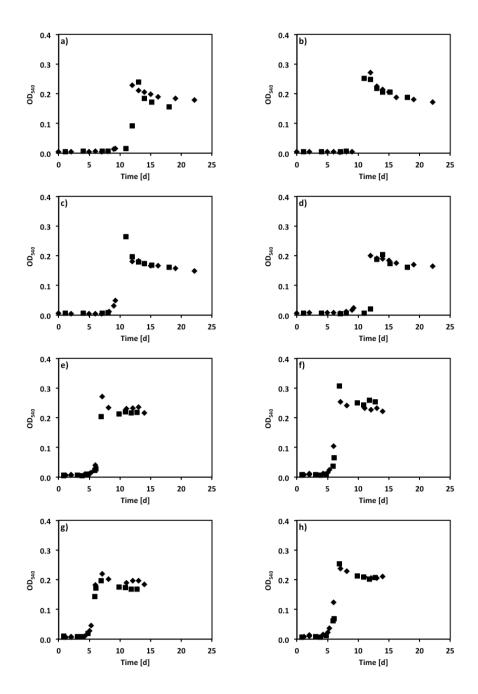

Supplementary Materials

Defining nutrient combinations for optimal growth and polyhydroxybutyrate production by *Methylosinus trichosporium* OB3b using Response Surface Methodology

Jorge A. Zaldívar Carrillo¹, Lisa Y. Stein², Dominic Sauvageau^{1#}


¹ Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
 ² Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2V2, Canada

[#]Corresponding author: Email: dominic.sauvageau@ualberta.ca Phone: +1 780 492 8092 Fax: +1 780 492 2881



Effect of carbon and nitrogen source and inoculum history on growth of *M. trichosporium* OB3b – Growth Curves

Fig. S1. Growth curves of *M. trichosporium* OB3b for treatments (methane-grown inocula, ammonium as nitrogen source) detailed in Table 1 for the second-order statistical regression analysis. Conditions: a) methanol, high N:C, aged inoculum; b) methanol, high N:C, fresh inoculum; c) methane, high N:C, aged inoculum; d) methane, high N:C, fresh inoculum; e) methanol, low N:C, aged inoculum; f) methanol, low N:C, fresh inoculum; g) methane, low N:C, aged inoculum; h) methane, low N:C, fresh inoculum.

Fig. S2. Growth curves of *M. trichosporium* OB3b for treatments (methane-grown inocula, nitrate as nitrogen source) detailed in Table 1 for the second-order statistical regression analysis. Conditions: a) methanol, high N:C, aged inoculum; b) methanol, high N:C, fresh inoculum; c) methane, high N:C, aged inoculum; d) methane, high N:C, fresh inoculum; e) methanol, low N:C, aged inoculum; f) methanol, low N:C, fresh inoculum; g) methane, low N:C, aged inoculum; h) methane, low N:C, fresh inoculum.

Fig. S3. Growth curves of *M. trichosporium* OB3b for treatments (methanol-grown inocula) detailed in Table 1 for the second-order statistical regression analysis. Conditions: a) methanol, ammonium, high N:C, aged inoculum; b) methanol, ammonium, low N:C, aged inoculum; c) methanol, nitrate, high N:C, aged inoculum; d) methanol, nitrate, low N:C, aged inoculum; e) methanol, ammonium, high N:C, fresh inoculum; f) methanol, ammonium, low N:C, fresh inoculum; g) methanol, nitrate, high N:C, fresh inoculum; h) methanol, nitrate, low N:C, fresh inoculum; g) methanol, nitrate, high N:C, fresh inoculum; h) methanol, nitrate, low N:C, fresh inoculum.

Effect carbon and nitrogen source and inoculum history on growth of *M. trichosporium* OB3b – Analysis of Variance

Source	Sum of squares ⁽¹⁾	Degrees of freedom	Mean Square	F	p-value
C-source	0.22822	1	0.22822	950.07	9.66×10 ⁻³⁴
N-source	0.02794	1	0.02794	116.30	1.55×10^{-14}
N:C ratio	0.00299	1	0.00299	12.44	9.23×10 ⁻⁴
Inoculum	0.00052	1	0.00052	2.15	1.49×10^{-1}
C-source • N-source	0.00423	1	0.00423	17.60	1.14×10 ⁻⁴
C-source • N:C ratio	0.00076	1	0.00076	3.17	8.13×10^{-2}
C-source • Inoculum	0.00380	1	0.00380	15.82	2.29×10^{-4}
N-source • N:C ratio	0.00019	1	0.00019	0.80	3.75×10^{-1}
N-source • Inoculum	0.00063	1	0.00063	2.64	1.11×10^{-1}
N:C ratio • Inoculum	0.00025	1	0.00025	1.06	3.09×10^{-1}
C-source • N-source • N:C ratio	0.00047	1	0.00047	1.96	1.68×10^{-1}
C-source • N-source • Inoculum	0.00006	1	0.00006	0.23	6.30×10^{-1}
C-source • N:C ratio • Inoculum	0.00103	1	0.00103	4.29	4.37×10^{-2}
N-source • N:C ratio • Inoculum	0.00001	1	0.00001	0.02	8.80×10^{-1}
Error	0.01177	49	0.00024		
Total	0.28149	63			

Table S1: Analysis of variance for factor effects on growth experiments. The response factor is OD_{540} , as a measure of biomass concentration. Significant effects are highlighted in bold red.

⁽¹⁾ Constrained (Type III) sums of squares.

Based on the results obtained in Table S1, the resulting model for biomass produced (\hat{y}) , as measured by OD₅₄₀, as a function of the parameters investigated is:

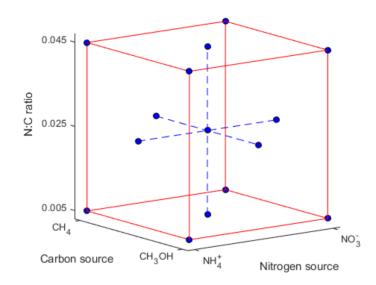
$$\hat{y} = \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 + \alpha_{12} x_1 x_2 + \alpha_{14} x_1 x_4 + \alpha_{134} x_1 x_3 x_4 \tag{S1}$$

In the equation, x_i represents the factors investigated (1: C-source, 2: N-source, 3: N:C ratio, 4: inoculum history), α_i represents the corresponding coefficients, and α_{ij} and α_{ijk} represent the coefficients for interactions.

Source	Sum of squares ⁽¹⁾	Degrees of freedom	Mean Square	F	p-value
C-source	0.03217	1	0.03217	182.07	4.00×10^{-18}
N-source	0.01102	1	0.01102	62.40	2.72×10^{-10}
N:C ratio	0.00227	1	0.00227	12.89	7.63×10 ⁻⁴
Inoculum	0.00113	1	0.00113	6.39	1.48×10^{-2}
C-source • N-source	0.00000	1	0.00000	0.02	8.81×10^{-1}
C-source • N:C ratio	0.00124	1	0.00124	7.03	1.08×10^{-2}
C-source • Inoculum	0.00266	1	0.00266	15.03	3.16×10 ⁻⁴
N-source • N:C ratio	0.00002	1	0.00002	0.10	7.51×10^{-1}
N-source • Inoculum	0.00027	1	0.00027	1.53	2.22×10^{-1}
N:C ratio • Inoculum	0.00042	1	0.00042	2.38	1.29×10^{-1}
C-source • N-source • N:C ratio	0.00015	1	0.00015	0.83	3.66×10^{-1}
C-source • N-source • Inoculum	0.00000	1	0.00000	0.01	9.18×10 ⁻¹
C-source • N:C ratio • Inoculum	0.00078	1	0.00078	4.42	4.07×10^{-2}
N-source • N:C ratio • Inoculum	0.00000	1	0.00000	0.00	9.64×10^{-1}
Error	0.00866	49	0.00018		
Total	0.06412	63			

Table S2: Analysis of variance for factor effects on growth experiments. The response factor is normalized OD_{540} per mol of carbon substrate, as a measure of biomass yield. Significant effects are highlighted in bold red.

⁽¹⁾ Constrained (Type III) sums of squares.


Based on the results obtained in Table S2, the resulting model for biomass produced per mole of carbon substrate (\hat{y}^*), as measured by OD₅₄₀ per mol of carbon substrate, as a function of the parameters investigated is:

$$\hat{y}^* = \alpha_1^* x_1 + \alpha_2^* x_2 + \alpha_3^* x_3 + \alpha_4^* x_4 + \alpha_{13}^* x_1 x_3 + \alpha_{14}^* x_1 x_4 + \alpha_{134}^* x_1 x_3 x_4 \tag{S2}$$

In the equation, x_i represents the factors investigated (1: C-source, 2: N-source, 3: N:C ratio, 4: inoculum history), α_i^* represents the corresponding coefficients, and α_{ij}^* and α_{ijk}^* represent the coefficients for interactions.

Response Surface Methodology (RSM) – Experimental Space and Parameter Coding

The design space forms a cubic three-dimensional region where the axes correspond to the carbon source (x_1) , ranging from pure methane to pure methanol, with mixtures between them; the nitrogen source (x_2) , ranging from pure ammonium to pure nitrate, with mixtures of both along the axis, and the nitrogen-to-carbon ratio (x_3) , ranging from 0.005 to 0.045. The experimental space is depicted in Fig. S4.

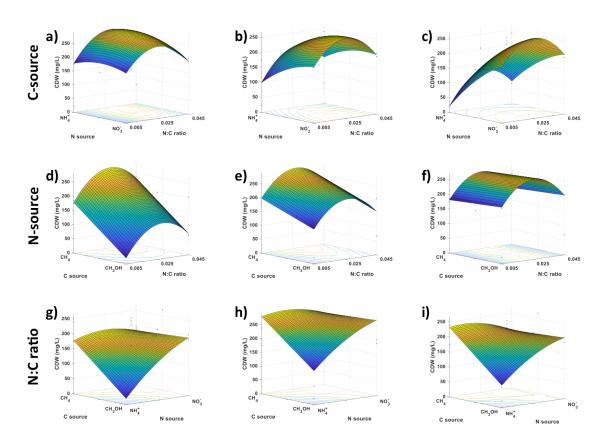
Fig. S4: Experimental space points for the face-centered central composite design. Three levels of each variable were used in the experiment. Carbon source: pure methane, pure methanol and an equimolar mixture. Nitrogen source: pure ammonium, pure nitrate and an equimolar mixture. Nitrogen-to-carbon ratio: 0.005, 0.025, and 0.045. Four replicates were run at the center point.

To represent the carbon source, variable x_1 was used, coded as follows: let c_1 and c_2 be the molar fraction of methane and methanol in the carbon source. The coded variable for carbon source was:

$$x_1 = c_2 - c_1 \tag{S3}$$

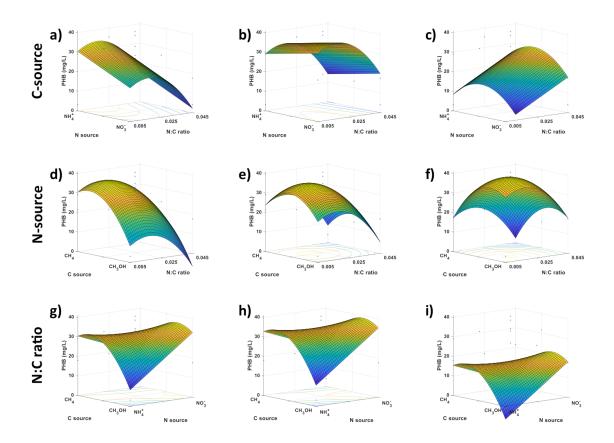
To represent the nitrogen source, variable x_2 was used, coded as follows: let n_1 and n_2 be the molar fraction of ammonium and nitrate in the nitrogen source. The coded variable for nitrogen source was:

$$x_2 = n_2 - n_1$$
 (S4)


To represent the nitrogen-to-carbon ratio, variable x_3 was used, coded as follows: let r_1 and r_2 be the lower and upper limits of the nitrogen-to-carbon ratio for the experiment. If r is the nitrogen-to- carbon ratio, the coded variable for nitrogen-to-carbon ratio was:

$$x_3 = \frac{r - \frac{r_1 + r_2}{2}}{\frac{r_2 - r_1}{2}} \tag{S5}$$

As per the face-centered central composite design, coded values of -1, 0 and 1 were used for all the independent variables.


This design allows the fitting of a second order polynomial of the form:

$$\hat{y} = b_o + b_1 x_1 + b_2 x_2 + b_3 x_3 + b_{11} x_1^2 + b_{22} x_2^2 + b_{33} x_3^2 + b_{12} x_1 x_2 + b_{13} x_1 x_3 + b_{23} x_2 x_3$$
(S6)

Response Surfaces for Cell Dry Weight and PHB Concentration

Fig. S5. Cell dry weight response surfaces for *M. trichosporium* OB3b growing on combinations of C-source, N-source and N:C ratio. First row: keeping C-sources constant: a) methane, b) equimolar mixture of methane and methanol, c) methanol; second row: keeping N-sources constant: d) ammonium, e) equimolar mixture of ammonium and nitrate, f) nitrate; third row: keeping N:C ratios constant: g) 0.005, h) 0.025, i) 0.045. The first row is shown in main body of manuscript as Fig. 5 and is reproduced here for convenience.

Fig. S6. PHB concentration response surfaces for *M. trichosporium* OB3b growing on combinations of C-source, N-source and N:C ratio. First row: keeping C-sources constant; second row: keeping N-sources constant; third row: keeping N:C ratios constant. The first row and Fig. 7f are shown in main body of manuscript as Fig. 6 and are reproduced here for convenience.

Example of Gas Chromatography Analysis for PHB analysis

PHB was hydrolyzed to its monomer (3-hydroxybutyric acid) and esterified with methanol according to the method described in the Materials and Methods section. Methyl 3-hydroxybutyrate was identified and compared to a standard peak of methyl benzoate (obtained from the reaction of benzoic acid with methanol in the treated samples) for quantification.

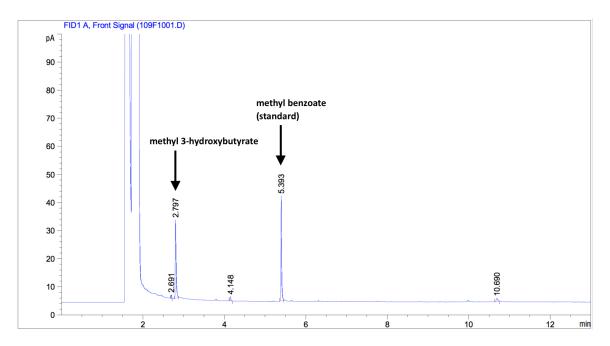


Fig. S7. Example of chromatogram for the quantification of methyl 3-hydroxybutyrate.