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1 Supplementary Methods 

1.1 Determination of the best motif length for 7 types of lysine modifications by k-means 

algorithm  

To cluster the collected lysine modification sites, we first extracted the L-amino acid 

flanking regions with the modified lysine residue at the center in both positive and negative data 

set. Specifically, according to our previously published papers (Zhao et al., 2014; Xie et al., 

2016), the negative data set was constructed by preserving all lysine residues in the same 

protein that were not experimentally verified as modified by specific chemical groups. For a 

given L-amino acid flanking region, there are 23 kinds of possible symbols, including 20 natural 

amino acids, an unknown amino acid X, a rare amino acid U and a gap character “*”. 

Accordingly, we can therefore construct a position specific scoring matrix (PSSM) with 

dimensionality in L×23. Based on these definitions, the following computational processes were 

performed.  

 

(1) Centroid initialization for K-means 

For each modification, all L-amino acid flanking regions were randomly divided into k 

categories. The number of amino acids j observed in the ith position for each category was 

defined as jim , . The conservative score jiM , , was calculated as shown in equation 1, and bj  

was the background occurrence rate of amino acid j obtained from UniProt database 

(Supplementary Table 1). 
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For each category, we can build a PSSM of L*23-dimension in equation 2. 
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(2) Reclassification of the L-amino acid flanking regions  



 

 

We re-classified all the L-amino acid flanking regions based on the scheme listed below. 

Firstly, in each initial category, we calculated the similarity score Rpeptide of each peptide from 

the corresponding PSSMP using equation 3. All peptides were then categorized to the 

corresponding category according to the max score. 

 ∑L

i=0 i,AApeptide M=R    (3)                             

Where AAi,M  was the score of a given amino acid at the ith position in the corresponding 

PSSM. Based on the new classification, PSSMs of each cluster were re-calculated using the 

equations listed in step 1. 

. 

(3) Iteration step 

To obtain optimal clusters, step 2 was executed iteratively when the whole cluster reaching 

a convergence state. To measure such a convergence state, we defined a euclidean distance 

as shown in equation 4. The major goal of equation 4 is to quantify the difference of PSSMs 

between two adjacent iterations. 
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In the above equation, i,jM  was the conservative score of amino acid j in the ith position 

in current PSSM, ,i jN  was the conservative score of amino acid j in the ith position in previous 

PSSM. If the difference between two tested PSSMs are less than 1×10-8, and such state 

continued for more than 50 iterations, we will consider the algorithm converge at the steady 

status. Otherwise, step 2 will be executed again. 

  

（4）Choose the best clustering result 

Since the performance of k-means clustering is very sensitive to initial point selection, we 

therefore repeated the above steps for several times to obtain a satisfied clustering result. The 

satisfaction score of each initialization was calculated using equation 5. Of which, z is the 

number of clusters specified in the clustering algorithm. We then kept the clusters with the 



 

 

highest satisfaction score as the final result. 
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（5）Choose the best number of clusters in k-means algorithm 

 To find the best number of clusters for each modification type, the statistical model 

proposed by Vacic et al was used (Vacic et al., 2006). In more detail, let P  and Q be the 

positive and negative peptides, respectively. Then, |P|  and |Q|  were defined as the number 

of peptides in the corresponding data set. Let iP  denoted the ith peptide in the positive dataset

P , and j,iP  denoted the jth position in peptide iP . For each position in P  and for each 

symbol a  from the 23 symbols, a binary vectors 
a,j

pX  can be form by equation 6 
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iI  in equation 6 can be calculated as shown in equation 7. 
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Vector 
a,j

QX  was conversely formed. Next, we calculated the p-value under the null 

hypothesis that vectors 
a,j

pX  and 
a,j

QX  were sampled from the same distribution using a two 

sample t-test. Based on the calculated p-value, we can construct the significant PSSM P  as 

shown in equation 8.  
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Where L denoted the length of peptides, j,ip was the p-value of the ith amino acid in the 

jth position for a given peptide. For each cluster, we obtained a PSSMP with a dimension of 23*L. 

Since PSSMP  can only represent the differences of sequence conservation between 



 

 

positive and negative sites, a method that also measured the conservation tendency should be 

included. Therefore, we further established the following computational processes to address 

this issue. Firstly, we counted the observed frequency of an amino acid a in position j for positive 

and negative data set, respectively. And then, we computed the modified PSSM score using 

equation 9 and 10.  
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Where
Pos

ji,f   and  
Neg

j,if  were the observed frequency of the ith symbol in the jth position 

of positive peptides and negative peptides. We next constructed the final modified PSSMP  as 

shown in equation 11. 
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In this modified PSSME , if j,iE is greater than zero, then the corresponding amino acid in the 

jth position is more likely to appear in the positive peptides. While in the opposite case, the 

amino acid will have a better chance of appearing in the negative peptides. If the absolute value 

of j,iE is closer to 0, this amino acid was not significantly difference between two datasets. 

Finally, we summed up the maximum value of each position in EPSSM to get the 

conservation score of each cluster as shown in equation 12. 
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Where nscore was the score of the nth cluster. We calculated the mean of conservation 

score for each k-cluster and chose the k-cluster with maximum conservation score as the result 



 

 

of each modification. 

In order to further determine the linear motif length of different types of modification sites, 

we need to select its optimal upstream and downstream regions. To do this, we plotted the 

sequence logo by putting the PSSME  of each cluster into Seq2Logo, and selected the best 

motif length L by experience for each cluster. 

1.2 Hierarchical Bayesian model for driver protein identification  

Using the above computational method, the motif region of each lysine modification type 

was determined. Overlapped motifs of the same modification type were merged together and 

regions without any motifs were regarded as modification-free in every protein. 

We assumed that mutations on the motif regions would probably damage the lysine 

modification process, and therefore influence the function of corresponding proteins via PTM-

related pathways. Furthermore, if such lysine modification-related mutations are highly 

correlated with tumor proliferation, they will probably undergo obvious positive selection and 

unexpectedly high mutation rates will be observed in the motif regions. In view of this, we can 

identify lysine-modified proteins that drive the cancer development and progression processes 

by comparing the mutation rates in both motif regions and modification-free regions. To achieve 

this, a null hypothesis that the mutation rate in the motif region is the same as which in the 

modification-free region is proposed. 

To accurately model the lysine modification-related mutation rates in both regions, we have 

designed the following statistical model based on a hierarchical Bayesian method. According 

to the null hypothesis, we need, first of all, to construct the motif region and the modification-

free region. Therefore, the sequence of lysine modification motifs and modification-free regions 

were merged separately and construct a modification region and a background region for each 

protein (see Figure 2 in the main text).Next, non-synonymous mutations were mapped to both 

regions, and the number of patients that mutated at each residue for each tested protein were 

calculated. More formally, let 
1 2

Y Y Y
k

, , represented the number of patients that mutated on 

a corresponding position in the modification region of a given protein p. Similarly, the mutation 



 

 

count in the background region can be represented as 
k 1 2 n

Y Y Y
 k
, ,  According to this 

definition, the observed counts Y can be described by a Poisson distribution as shown in 

equation 13 and 14. Where 1λ  and 2λ   were the mutation rates of the modification region 

and the background region, respectively. 

 

                 
i 1

Y ~Poisson(λ ) i=1,2,3, ,k  (13) 

 
i 2

Y ~Poisson(λ ) i=k+1,k+2, ,n  (14) 

As the selective pressure in different sequence regions varies violently, mutation rate can 

be fluctuated across different positions. To capture these fluctuations, a prior distribution was 

putted on 1λ  and 
2  to build a two hierarchical model. Since the Gamma distribution is 

a conjugate prior for the Poisson distribution, two Gamma distributions with different shape 

parameter α  and scale parameter β  were used to describe the distribution of 1λ  and 2λ

in Equation 15 and 16. 
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A major goal of our model is to obtain estimations of the marginal distribution of 1λ  and 

2λ  given the observed data Y, i.e. calculating 
1

P(λ |Y)  and 
2

P(λ |Y) . To calculate this, we first 

need to obtain the full joint distribution of them. According to the Bayesian Theory, the full joint 

distribution of 1λ  and 2λ  can be constructed as shown in equation 17. 
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Where )λ,λY(P 21  was the likelihood of Y . )λ,λ(P 21  was the prior distribution of 

1λ  and 2λ . We hypothesized that the mutations observed in the modification and background 

regions were all independent. Accordingly, the full joint distribution can be further simplified as 

shown in equation 17. As we plugged the probability density function of the Poisson (equation 



 

 

18) and Gamma (equation 19) distribution into the above equation, concrete from of the full 

joint probability were given. 
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Through proper simplification, the full joint probability can be written as shown in equation 

20. 
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Computing the marginal distribution from the full joint probability required integrating over 

other unrelated variables in equation 20. Unfortunately, computing integration from equation 20 

was generally a formidable analytic problem, and can hardly be done by human hand. A more 

straightforward way to do so is to use the Markov Chain Monte Carlo (MCMC) method, i.e. 

Gibbs sampling, for estimation (Gelfand et al., 1990; Gelfand and Smith, 1990). Implementation 

of Gibbs sampling method required the full-conditional probabilities of all variables in equation 

20, that is the 
1 2

P(λ |Y,λ )  and 
1 2

P(λ |Y,λ ) . To obtain these, we should first take the logarithm 

of both sides in equation 20 to compute them. Equation 21 shows the final computation results. 
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As reported in previous publications (George and McCulloch, 1993; Gilks et al., 1996), full 

conditional probabilities for a given variable can be derived by abstracting out from the joint 

probability only those elements including that variable and treating other components as 

constants. Based on this rule, the full conditional posterior probability of 1λ  and 2  can be 

calculated as shown in equation 22 and 23.  
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Interestingly, after simplification, the full conditional posterior probabilities of 
1  and 

2

are all reduced to gamma distribution from which direct sampling is straightforward (equation 

24 and 25). 
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To test the difference between the mutation rates of background region and modification 

region, a variable of interest might be the relative mutation rate defined as 1

2

λ
R=

λ
. Previously, 

in the published paper from Carlin et al (Carlin et al., 1992), they have given an instruction that 

if a variable W actually appears as a function of another variable U, the full conditional 

probability of W can be obtained by univariate transformation from that of U. Following these, 

we further transform λ1 to R (equation 26) to obtain the full conditional probability of R. 

 21 λRλ =  (26) 

Plugging equation 26 into equation 24, we can obtain equation 27. 
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Similarly, abstracting R from equation 27, we can reduce the full conditional probability of 

R to equation 28. 
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Again, the full conditional posterior probability of R is confirmed to gamma distribution 

(equation 29). 
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After calculating all the full conditional probabilities of each variable, we can now use Gibbs 

sampling algorithm, a Markov Chain Monte Carlo (MCMC) method, to sample from Equation 

21, 22 and 29 to estimate the marginal distribution of these parameters. The pseudocode is 

shown in Supplementary Figure 3. 

By taking α1 = α2 = 1 and β1 = β2 = 0.5, we started the Gibbs sampling algorithm as shown 

in Supplementary Figure 3. During the calculation, we totally performed 5,200 iterations and 

dropped out the first 200 as the burn-in process. Finally, the marginal distribution of
1 , 

2 and 

R are estimated by the data sampled from the last 5,000 iterations. 

Given the null hypothesis raised at the very beginning of this section, we can rewrite it as 

shown in equation 30. 
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The p-value under the null hypothesis is then calculated from the marginal distribution of 

R. For each tested protein, the probability of observing the relative mutation rate less than 1 

can be calculated. To control false positive, the Benjamini-Hochberg procedure is applied to 

each p-value. If the corrected p-value for a given protein is lower than the significant level, i.e. 

0.05, we will identify it as a significantly mutated protein. 

 

1.3 Preparation of the data set for random walk with restart analysis 

To identify potential targets for the lysine modification-related driver proteins, we applied a 



 

 

random walk with restart (RWR) approach in our study. The drug-target, drug-drug and target-

target interactions were incorporated to form a heterogeneous network for analysis. Here, we 

describe each step of the above procedure in detail. 

The drug-target network was compiled from the Drugbank database (Version 5.0.9) (Law 

et al., 2014) by integrating all the external drug links together. Based on the collected drug-

target interactions, we next constructed a drug-target relationship matrix for the subsequent 

RWR analysis. Each element Ai,j in the drug-target relationship matrix represented the 

interaction status of a given drug-target pair. If drug i is recorded to interact with target j, then 

the Ai,j will be set as 1, otherwise 0. Equation 1 shows an example of the drug-target relationship 

matrix. 
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To construct the network between drugs, we first downloaded all the chemical structures 

of our collected drugs from the Drugbank database. The Open Babel toolbox (O'Boyle et al., 

2011) was then applied to compute the molecular fingerprints for each individual drug structure. 

The molecular fingerprints encode a molecular structure in a series of binary digits that 

represent the presence or absence of particular substructures in the molecule. In general, 

calculations of the molecular fingerprints will allow us to quantitatively determine the structural 

similarity between two molecules. At present, there are four types of fingerprints available: FP2, 

FP3, FP4 and MACCS. In this study, the MACCS fingerprint was used. Based on the MACCS 

fingerprint, we next calculated the similarity between two given drugs using the Tanimoto 

coefficient (equation 32) (Bajusz et al., 2015). 
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In the above equation, A and B represent the binary MACCS fingerprints for drug a  and 

b , respectively. For a given pair of binary variables, the Tanimoto coefficient will be calculated 

as ranging from 0 to +1, and the value of +1 represents the highest similarity. Similar to the 

drug-target interactions, the network between drugs can be defined as the drug-drug 

relationship matrix shown in equation 33. Specifically, element ,i jA in this matrix is defined as 

the Tanimoto similarity between drug i and drug j. Note that, in this study, the network is required 

to have no multiple edges or self-edges. Therefore, the diagonal of matrix DD will be directly 

set to 0. 
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In addition to the drug-drug and drug-target interactions, we also measure the target-target 

relationship for the RWR process. To expand the searching area, we further integrated the 

protein-protein interaction data from the STRING database (Szklarczyk et al., 2015; Szklarczyk 

et al., 2017) in our study. Particularly, to ensure the data quality, only the interactions with 

confidence scores larger than 0.7 were preserved. Again, according to the recorded interactions, 

we constructed the relationship matrix as shown in equation 34. Similarly, to avoid self-

connection in the target-target network, we let the diagonal of matrix TT  be 0. 
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The element 
,i jA  in equation 34 represents the similarity score between two target 

proteins 
1T  and 

2T  . We calculated this similarity score using the equation proposed by 

Bleakley and Yamanishi (Bleakley and Yamanishi, 2009)(equation 35). 
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Here, 
1 2( , )SW T T denotes the Smith-Waterman similarity score between the target protein 

T1 and T2. 

 

1.4 Algorithmic details of the random walk with restart process 

The previously constructed target-drug, target-target and drug-drug networks were first 

combined into an undirected heterogeneous network, and the RWR process was then applied 

to predict potential downstream targets and drugs related to lysine modification mutations. The 

RWR simulates a random walker from a set of seed nodes and moves it to its neighbors 

randomly at each step. After a few round of iterations, the random walker will reach a steady 

state and provide a probability of reaching that point for each node.  

To run the RWR process, we first need to construct the transition matrix M according to 

Seal’s method (Seal et al., 2015). Given the heterogeneous network, we can write the transition 

matrix as shown in equation 36: 
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Where 
TTW , 

TDW  and 
DDW are the relationship matrix of the target-target, target-drug 

and drug-drug networks, respectively. In particular, is the relationship matrix of the drug-target 

network and is equivalent to the transpose of 
DTW . Based on the transition matrix M , the 

RWR process can be formally described as follows: 
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Where pt is a vector with an ith element representing the probability of finding the walker 

in node i at step t and p0 is the initial probability vector. If there are k initial nodes in which the 

walker will start, we will define these k initial nodes as having probabilities of 1/k, and the 

remaining nodes will have probabilities of 0 (equation 38). Finally, λ is a fixed parameter 

denoting the restart probability at each iteration step.  
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Then, according to equation 37, pt is updated iteratively until the difference between pt and 

pt+1 is less than 10-6. After the RWR iteration, all nodes are sorted by their assigned probabilities, 

and the top 10 most accessible nodes are maintained as candidates that are interacted with 

our identified driver proteins (Zhu et al., 2013).  
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2 Supplementary Figures 

Supplementary Figure 1. The normalized conservation score of each k-cluster for 7 types 

modification. 

 

 

  



 

 

Supplementary Figure 2. The best motifs clustered by k-means for Acetylation, Glycation, 

Malonylation, Methylation, Succinylation, Ubiquitination and SUMOylation. 

 

  



 

 

Supplementary Figure 3. The pseudocode of Gibbs sampling in hierarchical Bayesian model 

 

 

 

  



 

 

3 Supplementary Tables 

Supplementary Table 1 – The background rate of 22 amino acids and a gap character used 

in k-means algorithm. 

Supplementary Table 2 – Lysine modification sites collected in this paper. 

Supplementary Table 3 – The identified lysine modification-related mutations. 

Supplementary Table 4 – The significant lysine modification-related mutated proteins 

identified using hierarchical Bayesian models. 

Supplementary Table 5 – The significantly altered domains analyzed by hypergeometric test  

Supplementary Table 6 – The information of drugs explored in network analysis. 

 

 

 


