Appendix to manuscript Noise is not error: detecting parametric heterogeneity between epidemiologic time series

Ethan Obie Romero-Severson ${ }^{1}$, Ruy M. Ribeiro ${ }^{1,2}$ and Mario Castro ${ }^{3,4, *}$
${ }^{1}$ Los Alamos National Laboratory, Theoretical Biology and Biophysics Group, Los Alamos, New Mexico, USA.
${ }^{2}$ Universidade de Lisboa, Faculdade de Medicina, Laboratório de Biomatemática, Lisbon, Portugal
${ }^{3}$ Universidad Pontificia Comillas, Grupo Interdisciplinar de Sistemas Complejos (GISC) and DNL, Madrid, Spain.
${ }^{4}$ University of Leeds, School of Mathematics, Department of Applied Mathematics, Leeds, UK.
Correspondence*:
Mario Castro
marioc@comillas.edu

APPENDIX

A. POMP CODE

To specify a pomp process we need to specify a rprocess function that simulates the state of the system conditional on a given parameter vector and a dmeasure function that returns the likelihood of the data given the simulated state at a given time. Inference was performed with pomp version 1.13.

The rprocess for the deterministic birth-death model is coded as

```
step.fn = Csnippet(
```



```
\sqcup\textrm{p}1\lrcorner=\llcorner\operatorname{pow}(\textrm{t}1,2)/\mathrm{ pow (t2,2);}
```



```
๑\mp@code{p3=}\mathrm{ -pow (t3,2)/pow(t4,2);}
๑-p4\smile=_pow(t4,2)/t3;
\lrcorner-double }\lrcorner\textrm{a}\lrcorner=\lrcorner\textrm{rgamma}(\textrm{p}1,\lrcorner\textrm{p}2)
\lrcorner\mp@code{double }\lrcorner\textrm{b}\lrcorner=\lrcorner\textrm{rgamma}(\textrm{p}3,\lrcorner\textrm{p}4);
```



```
๑double S [100];
-\iotaint i ;
\iota\sqcupfor(i=1; i < 21; i ++ ){
\sqcup\sqcup\sqcupЧS[i] = curpop;
```



```
        curpop }==\mp@subsup{c}{curpop }{\bullet+\sqcupnbirth;
```



```
-๑๑\lrcornerif(curpop <0)curpop=0;
--}
\lrcorner-S1=S[1];S2=S [2];S3=S [3];S4=S[4];S5=S [5];
๑\checkmarkS6=S[6];S7=S[7];S8=S[8];S9=S[9];S10=S[10];
\squareS11=S[11];S12=S[12];S13=S[13];S14=S[14];S15=S[15];
\sqcup\llcornerS16=S[16];S17=S[17];S18=S[18];S19=S[19];S20=S[20];S21=a;
\bullet\sqcup")
```

```
rprocess = discrete.time.sim(step.fn)
```

```
rprocess = discrete.time.sim(step.fn)
```

The stochastic birth-death model is identical with the terms curpop * a and curpop * b replaced by rpois (curpop * a) and rpois (curpop * b) respectively. The dmeasure function is coded as

```
dmeasure = function(y, x, t, params, log, ...){
    a = x[21]; y = y[1:20]; x = x[1:20]
    pr = sum(dpois(y, x*a, log=T))
    if(log==F) pr = exp(pr)
    pr
}
```

The simulated data are generated with the following code

```
to.internal = function(mu, sig){
    p1 = mu^2/ sig^2
    p2 = sig^2/mu
    c(p1,p2)
}
bd.sim = function(N, K, mu.A, sig.A, mu.B, sig.B){
    pa = to.internal(mu.A, sig.A)
    pb = to.internal(mu.B, sig.B)
    ret = data.frame(time=0:K)
    for(n in 1:N){
        if(sig.A<1e-50) a=mu.A else a = rgamma(1, pa[1], scale=pa[2])
        if(sig. }\textrm{B}<1\textrm{e}-50)\textrm{b}=\textrm{mu.B}\mathrm{ else b = rgamma(1, pb[1], scale=pb[2])
        sl = numeric(K+1)#state line
        dl = numeric(K+1)#data line
        sl[1] = 1; dl[1] = 1
        for(k in 2:(K+1)){
            n.birth = rpois(1, sl[k-1]*a)
            sl[k] = sl[k-1] + n.birth
            n.death = rpois(1, sl[k]*b)
            if(n.death > sl[k]) n.death = sl[k]
```

```
            sl[k] = sl[k] - n.death
            dl[k] = n.birth
        }
        ret[paste("d",n,sep="")] = dl
    }
    ret
}
```

A1 = list ()
$\mathrm{A} 1[[1]]=\exp . \operatorname{sim}(20,20,0.15,0)$
early onA1[[2]] $=\exp \cdot \operatorname{sim}(20,20,0.15,0.02)$
$\mathrm{A} 1[[3]]=\mathrm{bd} . \operatorname{sim}(20,20,0.25,0,0.1,0)$
$\mathrm{A} 1[[4]]=\mathrm{bd} . \operatorname{sim}(20,20,0.25,0.02,0.1,0.01)$
saveRDS(A1, "simdat1.rda")
A2 = list ()
for (i in $\operatorname{seq}(10,50,10))\{$
$\mathrm{A} 2[[$ length $(\mathrm{A} 2)+1]]=\mathrm{bd} \cdot \operatorname{sim}(20, \mathrm{i}, 0.15,0.02,0,0)$
\}
saveRDS(A2, "simdat2.rda")

```
A3 = list()
for(i in seq(10,50,10)){
    A3[[length(A3)+1]] = bd.sim(i, 20,0.15,0.02,0,0)
}
saveRDS(A3, "simdat3.rda")
A4 = list()
for(i in seq(0.01,0.05,0.01)){
    A4[[length(A4)+1]] = bd. sim(20,20,0.15,i,0,0)
}
saveRDS(A4, "simdat4.rda")
```


B. DERIVATION OF THE ODE SOLUTION OF THE PURE BIRTH PROCESS

For the sake of clarity, we include here a derivation of the entries in Table 2 in the main text. Using the ODE

$$
\frac{d I}{d t}=\alpha I
$$

as a starting point, we can derive different observables. Thus, integrating the latter equation we can find the (total) number of infected

$$
\frac{d I}{I}=\alpha d t \Rightarrow \log I(t)-\log I_{0}=\alpha t \Rightarrow I(t)=e^{\alpha t}
$$

Hence, the number of new cases per unit time:

$$
N(t) \equiv \frac{d I}{d t}=\alpha e^{\alpha t}
$$

And the number of new cases in an interval of time Δt,

$$
N_{t} \equiv \int_{t}^{t+\Delta t} N(t) d t=I(t+\Delta t)-I(t)=e^{\alpha t}\left(e^{\alpha \Delta t}-1\right)
$$

Finally, the total number of cases, in the absence of death, is the same as the total number that get infected, $I(t)$.

C. DERIVATION OF THE EQUATION FOR R^{2}

Equation (1) in the main text allows to calculate the probability of having a total number of infected cases at time $t, I(t)$, given the values of μ_{A} and σ_{A}.

$$
P\left(I \mid \mu_{A}, \sigma_{A}, t\right)=\frac{\left(1-e^{-\alpha t}\right)^{I-1} e^{-\frac{\left(\alpha-\mu_{A}\right)^{2}}{2 \sigma_{A}^{2}}-\alpha t}}{\sqrt{2 \pi \sigma_{A}^{2}}}, \quad I=1,2, \ldots
$$

The moments of this probability distribution are given by

$$
m_{k}=\int_{-\infty}^{\infty} d \alpha \sum_{I=1}^{\infty} I^{k} P\left(I \mid \mu_{A}, \sigma_{A}, t\right)
$$

From this formula, we can calculate the moments explicitly, and, in particular, the mean and variance will be:

$$
\begin{equation*}
\langle I\rangle \equiv m_{1}=e^{\mu_{A} t+\frac{\sigma_{A}^{2} t^{2}}{2}} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{I}^{2} \equiv m_{2}-m_{1}^{2}=-e^{\frac{\sigma_{A}^{2} t^{2}}{2}+\mu_{A} t}+2 e^{2 t\left(\mu_{A}+\sigma_{A}^{2} t\right)}-e^{t\left(2 \mu_{A}+\sigma_{A}^{2} t\right)} \tag{2}
\end{equation*}
$$

It is worth noting that both the mean and the variance of I depend on μ_{A} and σ_{A}.
When $\mu_{A} \rightarrow \alpha$ and $\sigma_{A} \rightarrow 0$, and there is no parametric variability (i.e. all the variability is due to "noise"), the expressions in Eqs. 2 and 3 of the main text are the same as the final two rows in Table 2 of the main text. In particular,

$$
\begin{equation*}
\sigma_{\text {noise }}^{2}=e^{\alpha t}\left(e^{\alpha t}-1\right) \tag{3}
\end{equation*}
$$

When σ_{A} is small, but not zero, as is the case in some of our simulations ($\sigma_{A}=0.02$), we can use Taylor expansion of the terms in $e^{\sigma_{A}^{2} t^{2}}$ to approximate expression (2), for times $t \ll 1 / \sigma_{A} \simeq 50$, by

$$
\begin{gathered}
\sigma_{I}^{2}=e^{\alpha t}\left(e^{\alpha t}-1\right)+\frac{1}{2} \sigma_{A}^{2} t^{2} e^{\alpha t}\left(6 e^{\alpha t}-1\right)=\sigma_{\text {noise }}^{2}+\sigma_{\text {param }}^{2} \\
\sigma_{\text {param }}^{2} \equiv \sigma_{A}^{2} \frac{1}{2} t^{2} e^{\alpha t}\left(6 e^{\alpha t}-1\right) .
\end{gathered}
$$

We can simplify the latter expression further, for times $t \gg 1 / \alpha$ (i.e., when $e^{\alpha t} \gg 1$ and $e^{\alpha t}-1 \approx e^{\alpha t}$), to obtain

$$
\sigma_{I}^{2} \simeq e^{2 \alpha t}+3 \sigma_{A}^{2} t^{2} e^{2 \alpha t}=\sigma_{\text {noise }}^{2}\left(1+3 \sigma_{A}^{2} t^{2}\right)
$$

Finally, we can define the analogous of the coefficient of determination. In the original least squares regression,

$$
R^{2}=\frac{\sigma_{\hat{\hat{y}}}^{2}}{\sigma_{\hat{y}}^{2}+\sigma_{\hat{r}}^{2}}
$$

where \hat{y} is the vector of predicted values (namely, $\hat{y}=a x+b$, where a and b are the fitted coefficients) and $r=y-\hat{y}$ the vector of residuals of the fit. In that regard, we define:

$$
R^{2}=\frac{\sigma_{\text {param }}^{2}}{\sigma_{\text {param }}^{2}+\sigma_{\text {noise }}^{2}}
$$

which gives a relative quantification of the parametric variance compared to the total variance of the stochastic process. For the pure birth case, we arrive at the following equation:

$$
R^{2}=\frac{\frac{1}{2} \sigma_{A}^{2} t^{2} e^{\alpha t}\left(6 e^{\alpha t}-1\right)}{e^{\alpha t}\left(e^{\alpha t}-1\right)+\frac{1}{2} \sigma_{A}^{2} t^{2} e^{\alpha t}\left(6 e^{\alpha t}-1\right)} \simeq \frac{3 \sigma_{A}^{2} t^{2}}{1+3 \sigma_{A}^{2} t^{2}}
$$

D. TABLES OF FITS TO THE SIMULATED DATA

Table I. Summary of parameters used in Experiment 1(columns $\mu_{A, B}$ and $\sigma_{A, B}$) and corresponding estimates (indicated with a hat, e.g., $\hat{\mu}_{A}$). Confidence intervals are obtained using the likelihood curve method described in Sec. 2.2 of the main text.

Model	μ_{A}	$\hat{\mu}_{A}$	CI $\hat{\mu}_{A}$	σ_{A}	$\hat{\sigma}_{A}$	$\mathrm{CI} \hat{\sigma}_{A}$	μ_{B}	$\hat{\mu}_{B}$	CI $\hat{\mu}_{B}$	σ_{B}	$\hat{\sigma}_{B}$	CI $\hat{\sigma}_{B}$
Det.	0.15	0.15	$(0.15,0.16)$	0	-	-	0	-	-	0	-	-
Det.	0.15	0.13	(0.1,0.17)	0	0.06	$(0.05,0.11)$	0	-	-	0	-	-
Det.	0.15	0.13	$(0.13,0.14)$	0.02	-		0	-	-	0	-	-
Det.	0.15	0.12	(0.1,0.15)	0.02	0.04	$(0.03,0.06)$	0	-	-	0	-	-
Det.	0.25	0.18	$(0.17,0.18)$	0	-	-	0.1	-	-	0	-	-
Det.	0.25	0.17	(0.12,0.21)	0	0.18	$(0.13,0.21)$	0.1	-	-	0	-	-
Det.	0.25	0.18	(0.17,0.18)	0.02	-	-	0.1	-	-	0.01	-	-
Det.	0.25	0.16	$(0.12,0.21)$	0.02	0.18	$(0.13,0.21)$	0.1	-	-	0.01	-	-
Det.	0.15	0.18	$(0.17,0.2)$	0	-	-	0	0.01	$(0,0.07)$	0	-	-
Det.	0.15	0.18	$(0.13,0.22)$	0	0	(0,0.04)	0		(0,Inf)	0	0.5	(0.06,Inf)
Det.	0.15	0.14	(0.13,0.15)	0.02	-	-	0	0	$(0,0.03)$	0	-	-
Det.	0.15	0.14	$(0.11,0.16)$	0.02	0.06	$(0.03,0.09)$	0		(0,Inf)	0		(0,Inf)
Det.	0.25	0.3	(0.27,0.33)	0	-	-	0.1	0.1	(0.04,0.16)	0	-	-
Det.	0.25	0.32	$(0.26,0.42)$	0	0.01	$(0.01,0.07)$	0.1	0.21	$(0.1,0.4)$	0	0.28	$(0.2,0.64)$
Det.	0.25	0.33	$(0.3,0.36)$	0.02	-	-	0.1	0.08	$(0.01,0.14)$	0.01	-	-
Det.	0.25	0.27	$(0.2,0.38)$	0.02	0	(0,0.17)	0.1	0.17	$(0.09,0.33)$	0.01	0.26	$(0.14,0.39)$
Sto.	0.15	0.15	$(0.13,0.17)$	0	-	-	0	-	-	0	-	-
Sto.	0.15	0.15	$(0.15,0.18)$	0	0.05	$(0.03,0.11)$	0	-	-	0	-	-
Sto.	0.15	0.13	(0.12,0.15)	0.02	-	-	0	-	-	0	-	-
Sto.	0.15	0.13	(0.1,0.16)	0.02	0.01	(0,0.05)	0	-	-	0	-	-
Sto.	0.25	0.17	$(0.15,0.19)$	0	-	-	0.1	-	-	0	-	-
Sto.	0.25	0.17	$(0.13,0.2)$	0	0.03	$(0,0.15)$	0.1	-	-	0	-	-
Sto.	0.25	0.17	$(0.15,0.19)$	0.02	-	-	0.1	-	-	0.01	-	-
Sto.	0.25	0.16	(0.12,0.2)	0.02	0.12	(0.05,0.2)	0.1	-	-	0.01	-	-
Sto.	0.15	0.17	$(0.14,0.2)$	0	-	(0.05,0.2)	0	0.02	$(0,0.05)$	0	-	-
Sto.	0.15	0.15	$(0.12,0.19)$	0	0.01	$(0.01,0.06)$	0	0.55	$(0.05,2)$	0		(0.03,Inf)
Sto.	0.15	0.14	(0.12,0.15)	0.02	-	-	0	0	(0,0.02)	0	-	-
Sto.	0.15	0.14	$(0.11,0.16)$	0.02	0	$(0,0.03)$	0		(0,Inf)	0		(0,Inf)
Sto.	0.25	0.27	(0.22,0.31)	0	-	-	0.1	0.1	$(0.07,0.12)$	0	-	
Sto.	0.25	0.26	$(0.21,0.29)$	0	0	(0,0.03)	0.1	0.1	(0.07,0.13)	0	0	(0,0.19)
Sto.	0.25	0.25	(0.24,0.26)	0.02	-	-	0.1	0.1	(0.06,0.14)	0.01	-	-
Sto.	0.25	0.22	(0.17,0.27)	0.02	0	(0,0.05)	0.1	0.1	$(0.05,0.4)$	0.01	0	(0,0.4)

Table II. Summary of parameters used in Experiment 2 (columns μ_{A} and σ_{A}) and estimated (represented with the variables with a hat). Confidence intervals are obtained using the likelihood curve method described in Sec. 2.2 of the main text.

Model	O	μ_{A}	$\hat{\mu}_{A}$	CI $\hat{\mu}_{A}$	σ_{A}	$\hat{\sigma}_{A}$	CI $\hat{\sigma}_{A}$
Det.	10	0.150	0.143	$(0.11,0.2)$	0.020	0.090	$(0.05,0.15)$
Det.	20	0.150	0.159	$(0.13,0.19)$	0.020	0.038	$(0.03,0.05)$
Det.	30	0.150	0.151	$(0.13,0.18)$	0.020	0.037	$(0.03,0.04)$
Det.	40	0.150	0.155	$(0.13,0.19)$	0.020	0.047	$(0.04,0.05)$
Det.	50	0.150	0.161	$(0.14,0.19)$	0.020	0.036	$(0.03,0.04)$
Sto.	10	0.150	0.150	$(0.11,0.21)$	0.020	0.060	$(0,0.15)$
Sto.	20	0.150	0.168	$(0.14,0.2)$	0.020	0.002	$(0,0.04)$
Sto.	30	0.150	0.158	$(0.13,0.19)$	0.020	0.00001	$(0,0.02)$
Sto.	40	0.150	0.163	$(0.14,0.2)$	0.020	0.026	$(0.01,0.05)$
Sto.	50	0.150	0.153	$(0.14,0.16)$	0.020	0.017	$(0.01,0.02)$

Table III. Summary of parameters used in Experiment 3 (columns μ_{A} and σ_{A}) and estimated (represented with the variables with a hat). Confidence intervals are obtained using the likelihood curve method described in Sec. 2 of the main text.

Model	N	μ_{A}	$\hat{\mu}_{A}$	$\mathrm{CI} \hat{\mu}_{A}$	σ_{A}	$\hat{\sigma}_{A}$	$\mathrm{CI} \hat{\sigma}_{A}$
Det.	10	0.150	0.127	$(0.09,0.18)$	0.020	0.040	$(0.03,0.09)$
Det.	20	0.150	0.144	$(0.12,0.19)$	0.020	0.047	$(0.04,0.08)$
Det.	30	0.150	0.139	$(0.11,0.16)$	0.020	0.047	$(0.04,0.07)$
Det.	40	0.150	0.142	$(0.12,0.17)$	0.020	0.047	$(0.04,0.06)$
Det.	50	0.150	0.139	$(0.12,0.16)$	0.020	0.047	$(0.04,0.07)$
Sto.	10	0.150	0.137	$(0.1,0.2)$	0.020	0.058	$(0,0.15)$
Sto.	20	0.150	0.175	$(0.13,0.21)$	0.020	0.060	$(0,0.12)$
Sto.	30	0.150	0.156	$(0.13,0.19)$	0.020	0.051	$(0.01,0.11)$
Sto.	40	0.150	0.163	$(0.14,0.2)$	0.020	0.054	$(0.01,0.1)$
Sto.	50	0.150	0.165	$(0.14,0.2)$	0.020	0.057	$(0.02,0.09)$

Table IV. Summary of parameters used in Experiment 4 (columns μ_{A} and σ_{A}) and estimated (represented with the variables with a hat). Confidence intervals are obtained using the likelihood curve method described in Sec. 2 of the main text.

Model	μ_{A}	$\hat{\mu}_{A}$	CI $\hat{\mu}_{A}$	σ_{A}	$\hat{\sigma}_{A}$	$\mathrm{CI} \hat{\sigma}_{A}$
Det.	0.150	0.143	$(0.11,0.19)$	0.010	0.048	$(0.04,0.09)$
Det.	0.150	0.148	$(0.12,0.19)$	0.020	0.047	$(0.04,0.08)$
Det.	0.150	0.127	$(0.1,0.16)$	0.030	0.051	$(0.04,0.08)$
Det.	0.150	0.130	$(0.1,0.18)$	0.040	0.051	$(0.04,0.08)$
Det.	0.150	0.175	$(0.13,0.21)$	0.050	0.066	$(0.06,0.1)$
Sto.	0.150	0.173	$(0.13,0.21)$	0.010	0.056	$(0,0.12)$
Sto.	0.150	0.178	$(0.14,0.21)$	0.020	0.045	$(0,0.11)$
Sto.	0.150	0.139	$(0.11,0.19)$	0.030	0.048	$(0,0.11)$
Sto.	0.150	0.147	$(0.11,0.2)$	0.040	0.100	$(0.05,0.16)$
Sto.	0.150	0.192	$(0.15,0.24)$	0.050	0.110	$(0.06,0.16)$

