APPENDIX A

Component	Equation	
Milk yield	Eq. 1	Amount of herd milk loss due to CM = number of CM cases $\times 0.05^{a}$
reduction		× mean cow daily milk production × 305 ^b
	Eq. 2	Costs of milk loss due to CM = amount of herd milk loss due to CM
	F 0	× 0.78°
	Eq. 3	Average linear score of individual cow SCC in herd = (Log10(BMSCC) -1.6)/0.24 ^d
	Eq. 4	Amount of milk loss due to SCM=number of milking cows×190 ^d ×
		(Average linear score of individual cow SCC in herd -1)
	Eq. 5	Costs of milk loss due to SCM = Amount of milk loss due to $SCM \times 0.78^{c}$
Drug	Eq. 6	Cost of drugs for total local treatment= mean price of used
Diug		intramammary infusions per quarter per day × days of treatment ×
		frequency of treatments per day
	Eq. 7	Cost of drugs to treat mild to moderate CM = number of CM cases
	1	\times 0.8° × proportion of CM cases receiving treatment × cost of drugs
		for total local treatment
	Eq. 8	Cost of drugs to treat severe CM = number of CM cases \times 0.2° \times
		proportion of CM cases receiving treatment × (cost of drugs for total
		local treatment + 25.4 ^f)
	Eq. 9	Total cost of CM treatment= Cost of drugs to treat mild to moderate
		CM + Cost of drugs to treat severe CM
Discarded	Eq.	Amount of milk discarded for treated CM = number of CM cases \times
milk	10	Proportion of CM cases treated × (duration of treatment + mean
		withdrawal time) × average daily milk production per cow
	Eq.	Amount of milk discarded for untreated CM = Number of CM cases
	11	× (1- Proportion of CM cases treated) × number of days before milk
		is put back in bulk tank × average daily milk production per cow
	Eq.	Total amount of milk discarded in CM cases (treated + untreated) =
	12	Amount of milk discarded for treated CM + Amount of milk
		discarded for untreated CM
	Eq.	Economic impact of discarding milk in CM cases = (total amount of
	13	milk discarded in CM cases \times 0.78°) – (% of discarded milk used to
		feed calves \times total amount of milk discarded in $CM \times 0.49^g$)
	Eq.	Amount of milk discarded for $SCM = Number of cows excluded from$
	14	bulk tank for high SCC × number of days of this exclusion × mean
		daily milk production per cow
	Eq.15	Economic value of discarding milk in SCM cases = (Amount of
		milk discarded for $SCM \times 0.78^{\circ}$) – (Amount of milk discarded for
		$SCM \times 0.49^g$)
Veterinary	Eq.16	Cost of veterinary services for CM = number of CM cases ×
services		proportion of CM cases for which veterinarian is called × average cost
		for a veterinary visit

Component	Equation	n
	Eq.17	Cost of veterinary services for herd SCC management = total
		expenditures on professional advices about herd mastitis issue
Labor	Eq.18	Cost of labor to manage $CM = number of CM cases \times time spent$
		working on a CM case (diagnostic, initial treatment, follow-up
		treatment, separate milking) ×34.5 ⁱ
Product	Eq.19	Cost of milk quality = yearly payment for insurance in case there is
quality		an insurance coverage + penalty payment for exceeding SCC limit +
		premium loss for exceeding SCC limit
Diagnostic	Eq.20	Cost of diagnostic procedure for CM = number of samples collected
		in a year for CM × cost of each sample
	Eq.21	Cost of diagnostic procedure for SCM = number of samples
		collected in a year for SCM cases × cost of each sample
Culling and	Eq.22	Economic value of culling of 1st lactation cows for CM = Number
mortality		of 1st lactation cows culled due to CM × (costs for rearing or buying
		a 1st lactation cow - money received for meat or milk sale)
	Eq.23	Economic value of 1st lactation cows dying from CM = Number of
		1st lactation cows that died due to CM × (costs for rearing or buying
		a 1st lactation cow + money spent for carcass disposal)
	Eq.24	Economic value of culling of older cows for CM = Number of older
		cows culled due to CM \times (1.3 ^h \times costs for rearing or buying a 1st
		lactation cow - money received for meat or milk sale)
	Eq.25	Economic value of older cows dying from CM = Number of older
		cows that died due to CM \times (1.3 ^h \times costs for rearing or buying a 1st
		lactation cow + money spent for carcass disposal)
	Eq.26	Economic value of culling 1st lactation cows due to SCM =
		Number of 1st lactation cows culled due to SCM × (costs for rearing
		or buying a 1st lactation cow - money received for meat or milk
		sale)
	Eq.27	Economic value of culling older cows due to SCM = Number of
		older cows culled due to SCM \times (1.3 ^h \times costs for rearing or buying a
		1st lactation cow - money received for meat or milk sale)
Materials	Eq.28	Economic value of required labor for pre-milking teat disinfection in
and		12 months= number of milking cows× $(4/3600)^{j} \times 2^{k} \times 365^{l} \times 34.5^{i}$
investments	Eq.29	Economic value of required labor for post-milking teat disinfection
(with		in 12 months= number of milking cows× $(4/3600)^{j} \times 2^{k} \times 365^{l} \times 34.5^{i}$
required	Eq.30	Economic value of required labor for dry cow therapy in 12
labor)		months= number of milking cows× $0.8^{\rm m}$ × (2/60) $^{\rm n}$ × 34.5 $^{\rm i}$
	Eq.31	Cost of pre-milking teat disinfection in 12 months + Economic value
		of required labor for pre-milking teat disinfection + Cost of post-
		milking teat disinfection in 12 months + Economic value of required
		labor for post-milking teat disinfection + Cost of dry cow therapy in
		12 months + Economic value of required labor for dry cow therapy

Component	Equation	
		+ Cost of gloves used during milking in 12 months + Cost of mastitis vaccine in 12 months

All costs were multiplied by 100 and divided by number of milking cows to report value for a herd of 100 milking cows. Values were mostly obtained from producers through questionnaires except for factors with superscripts explained in following footnotes:

^a (Seegers et al., 2003b)

^b Days in 1 lactation

^c Cost of producing 1 litre of milk in 2015 in Canadian dollar (Canadian Dairy Commission, 2015)

^d (Fetrow et al., 1988)

^e Proportion of mild to moderate versus severe CM among all CM cases (database of NCDF)

^f Minimum additional cost of treatment for severe CM cases was considered 3 doses of trimethoprim /sulfamethoxazole as systemic antimicrobial and 1 dose of flunixin meglumine as anti-inflammatory drug for a cow with average body weight

^g Mean cost of 1 litre reconstituted milk replacers for calves based on mixing directions and cost of used brands

^h Average ratio of second to first parity lactational curve coefficients (Friggens et al., 1999)

ⁱ Hourly wage (Statistics Canada, 2015)

^j Required time in hours for disinfection of all teats of 1 cow

^k Assumed number of herd milking times per 24 hours

¹Number of days per year

^m Proportion of cows which were dried off in a herd per year

ⁿ Required time in hours to administer dry cow therapy for 1 cow (van Soest et al., 2016)