APPENDIX A | Component | Equation | | |------------|----------|--| | Milk yield | Eq. 1 | Amount of herd milk loss due to CM = number of CM cases $\times 0.05^{a}$ | | reduction | | × mean cow daily milk production × 305 ^b | | | Eq. 2 | Costs of milk loss due to CM = amount of herd milk loss due to CM | | | F 0 | × 0.78° | | | Eq. 3 | Average linear score of individual cow SCC in herd = (Log10(BMSCC) -1.6)/0.24 ^d | | | Eq. 4 | Amount of milk loss due to SCM=number of milking cows×190 ^d × | | | | (Average linear score of individual cow SCC in herd -1) | | | Eq. 5 | Costs of milk loss due to SCM = Amount of milk loss due to $SCM \times 0.78^{c}$ | | Drug | Eq. 6 | Cost of drugs for total local treatment= mean price of used | | Diug | | intramammary infusions per quarter per day × days of treatment × | | | | frequency of treatments per day | | | Eq. 7 | Cost of drugs to treat mild to moderate CM = number of CM cases | | | 1 | \times 0.8° × proportion of CM cases receiving treatment × cost of drugs | | | | for total local treatment | | | Eq. 8 | Cost of drugs to treat severe CM = number of CM cases \times 0.2° \times | | | | proportion of CM cases receiving treatment × (cost of drugs for total | | | | local treatment + 25.4 ^f) | | | Eq. 9 | Total cost of CM treatment= Cost of drugs to treat mild to moderate | | | | CM + Cost of drugs to treat severe CM | | Discarded | Eq. | Amount of milk discarded for treated CM = number of CM cases \times | | milk | 10 | Proportion of CM cases treated × (duration of treatment + mean | | | | withdrawal time) × average daily milk production per cow | | | Eq. | Amount of milk discarded for untreated CM = Number of CM cases | | | 11 | × (1- Proportion of CM cases treated) × number of days before milk | | | | is put back in bulk tank × average daily milk production per cow | | | Eq. | Total amount of milk discarded in CM cases (treated + untreated) = | | | 12 | Amount of milk discarded for treated CM + Amount of milk | | | | discarded for untreated CM | | | Eq. | Economic impact of discarding milk in CM cases = (total amount of | | | 13 | milk discarded in CM cases \times 0.78°) – (% of discarded milk used to | | | | feed calves \times total amount of milk discarded in $CM \times 0.49^g$) | | | Eq. | Amount of milk discarded for $SCM = Number of cows excluded from$ | | | 14 | bulk tank for high SCC × number of days of this exclusion × mean | | | | daily milk production per cow | | | Eq.15 | Economic value of discarding milk in SCM cases = (Amount of | | | | milk discarded for $SCM \times 0.78^{\circ}$) – (Amount of milk discarded for | | | | $SCM \times 0.49^g$) | | Veterinary | Eq.16 | Cost of veterinary services for CM = number of CM cases × | | services | | proportion of CM cases for which veterinarian is called × average cost | | | | for a veterinary visit | | Component | Equation | n | |-------------|----------|--| | | Eq.17 | Cost of veterinary services for herd SCC management = total | | | | expenditures on professional advices about herd mastitis issue | | Labor | Eq.18 | Cost of labor to manage $CM = number of CM cases \times time spent$ | | | | working on a CM case (diagnostic, initial treatment, follow-up | | | | treatment, separate milking) ×34.5 ⁱ | | Product | Eq.19 | Cost of milk quality = yearly payment for insurance in case there is | | quality | | an insurance coverage + penalty payment for exceeding SCC limit + | | | | premium loss for exceeding SCC limit | | Diagnostic | Eq.20 | Cost of diagnostic procedure for CM = number of samples collected | | | | in a year for CM × cost of each sample | | | Eq.21 | Cost of diagnostic procedure for SCM = number of samples | | | | collected in a year for SCM cases × cost of each sample | | Culling and | Eq.22 | Economic value of culling of 1st lactation cows for CM = Number | | mortality | | of 1st lactation cows culled due to CM × (costs for rearing or buying | | | | a 1st lactation cow - money received for meat or milk sale) | | | Eq.23 | Economic value of 1st lactation cows dying from CM = Number of | | | | 1st lactation cows that died due to CM × (costs for rearing or buying | | | | a 1st lactation cow + money spent for carcass disposal) | | | Eq.24 | Economic value of culling of older cows for CM = Number of older | | | | cows culled due to CM \times (1.3 ^h \times costs for rearing or buying a 1st | | | | lactation cow - money received for meat or milk sale) | | | Eq.25 | Economic value of older cows dying from CM = Number of older | | | | cows that died due to CM \times (1.3 ^h \times costs for rearing or buying a 1st | | | | lactation cow + money spent for carcass disposal) | | | Eq.26 | Economic value of culling 1st lactation cows due to SCM = | | | | Number of 1st lactation cows culled due to SCM × (costs for rearing | | | | or buying a 1st lactation cow - money received for meat or milk | | | | sale) | | | Eq.27 | Economic value of culling older cows due to SCM = Number of | | | | older cows culled due to SCM \times (1.3 ^h \times costs for rearing or buying a | | | | 1st lactation cow - money received for meat or milk sale) | | Materials | Eq.28 | Economic value of required labor for pre-milking teat disinfection in | | and | | 12 months= number of milking cows× $(4/3600)^{j} \times 2^{k} \times 365^{l} \times 34.5^{i}$ | | investments | Eq.29 | Economic value of required labor for post-milking teat disinfection | | (with | | in 12 months= number of milking cows× $(4/3600)^{j} \times 2^{k} \times 365^{l} \times 34.5^{i}$ | | required | Eq.30 | Economic value of required labor for dry cow therapy in 12 | | labor) | | months= number of milking cows× $0.8^{\rm m}$ × (2/60) $^{\rm n}$ × 34.5 $^{\rm i}$ | | | Eq.31 | Cost of pre-milking teat disinfection in 12 months + Economic value | | | | of required labor for pre-milking teat disinfection + Cost of post- | | | | milking teat disinfection in 12 months + Economic value of required | | | | labor for post-milking teat disinfection + Cost of dry cow therapy in | | | | 12 months + Economic value of required labor for dry cow therapy | | Component | Equation | | |-----------|----------|---| | | | + Cost of gloves used during milking in 12 months + Cost of mastitis vaccine in 12 months | All costs were multiplied by 100 and divided by number of milking cows to report value for a herd of 100 milking cows. Values were mostly obtained from producers through questionnaires except for factors with superscripts explained in following footnotes: ^a (Seegers et al., 2003b) ^b Days in 1 lactation ^c Cost of producing 1 litre of milk in 2015 in Canadian dollar (Canadian Dairy Commission, 2015) ^d (Fetrow et al., 1988) ^e Proportion of mild to moderate versus severe CM among all CM cases (database of NCDF) ^f Minimum additional cost of treatment for severe CM cases was considered 3 doses of trimethoprim /sulfamethoxazole as systemic antimicrobial and 1 dose of flunixin meglumine as anti-inflammatory drug for a cow with average body weight ^g Mean cost of 1 litre reconstituted milk replacers for calves based on mixing directions and cost of used brands ^h Average ratio of second to first parity lactational curve coefficients (Friggens et al., 1999) ⁱ Hourly wage (Statistics Canada, 2015) ^j Required time in hours for disinfection of all teats of 1 cow ^k Assumed number of herd milking times per 24 hours ¹Number of days per year ^m Proportion of cows which were dried off in a herd per year ⁿ Required time in hours to administer dry cow therapy for 1 cow (van Soest et al., 2016)