

Supplementary Material:

The Effect of Size Fraction in Analyses of Benthic Foraminiferal Assemblages: A Case Study Comparing Assemblages from the >125 and >150 µm Size Fractions

1 METRIC MULTIDIMENSIONAL SCALING QUALITY ASSESSMENT

Table S1. Summary of the eigenvalues for a metric multidimensional scaling of benthic foraminiferal assemblages from the Pefka E section. Values are given for the ordination solutions of the $>125 \,\mu m$ and $>150 \,\mu m$ fractions separately, and for the combined ordination of both size fractions.

	>125 µm fraction	>150 µm fraction	Combined data
Minimum	-0.245	-0.225	-0.481
1 st quartile	-0.030	-0.027	-0.038
Median	-0.004	-0.004	-0.014
Mean	0.088	0.082	0.089
3 rd quartile	0.056	0.044	0.036
Maximum	3.487	2.779	6.654

Figure S1: Shepard plot for the metric multidimensional scaling of the $> \!\! 125\,\mu\mathrm{m}$ size fraction of benthic foraminiferal assemblages from the Pefka E section.

Figure S2: Shepard plot for the metric multidimensional scaling of the $>\!150\,\mu\mathrm{m}$ size fraction of benthic foraminiferal assemblages from the Pefka E section.

Figure S3: Shepard plot for the metric multidimensional scaling of the combined $> 125 \,\mu\mathrm{m}$ and $> 150 \,\mu\mathrm{m}$ size fractions of benthic foraminiferal assemblages from the Pefka E section.

2 SAMPLE RAREFACTIONING

Figure S4: Rarefactioning curves of the $> 125\,\mu m$ (A) and $> 150\,\mu m$ (B) size fractions of benthic foraminiferal assemblages from the Pefka E section. The consistent shape of curves between both samples implies that observed differences in biodiversity do not result from undersampling of either size fraction.

3 ABUNDANCE CURVES

Figure S5: Relative abundances of genera of benthic Foraminifera from the Pefka E section. The abundances within the $>\!125\,\mu\mathrm{m}$ fraction (purple) and the $>\!150\,\mu\mathrm{m}$ fraction (green) are plotted together in the same graph.

Figure S6: Relative abundances of genera of benthic Foraminifera from the Pefka E section. The abundances within the $> 125 \, \mu m$ fraction (purple) and the $> 150 \, \mu m$ fraction (green) are plotted together in the same graph.

Figure S7: Relative abundances of genera of benthic Foraminifera from the Pefka E section. The abundances within the $>\!125\,\mu\mathrm{m}$ fraction (purple) and the $>\!150\,\mu\mathrm{m}$ fraction (green) are plotted together in the same graph.

Figure S8: Relative abundances of genera of benthic Foraminifera from the Pefka E section. The abundances within the $> 125\,\mu\mathrm{m}$ fraction (purple) and the $> 150\,\mu\mathrm{m}$ fraction (green) are plotted together in the same graph.

Figure S9: Relative abundances of genera of benthic Foraminifera from the Pefka E section. The abundances within the $> 125 \, \mu m$ fraction (purple) and the $> 150 \, \mu m$ fraction (green) are plotted together in the same graph.

Figure S10: Relative abundances of genera of benthic Foraminifera from the Pefka E section. The abundances within the $>\!125\,\mu\mathrm{m}$ fraction (purple) and the $>\!150\,\mu\mathrm{m}$ fraction (green) are plotted together in the same graph.

Figure S11: Relative abundances of genera of benthic Foraminifera from the Pefka E section. The abundances within the $>\!125\,\mu\mathrm{m}$ fraction (purple) and the $>\!150\,\mu\mathrm{m}$ fraction (green) are plotted together in the same graph.

Figure S12: Relative abundances of genera of benthic Foraminifera from the Pefka E section. The abundances within the $>\!125\,\mu\mathrm{m}$ fraction (purple) and the $>\!150\,\mu\mathrm{m}$ fraction (green) are plotted together in the same graph.

Figure S13: Relative abundances of genera of benthic Foraminifera from the Pefka E section. The abundances within the $>\!125\,\mu\mathrm{m}$ fraction (purple) and the $>\!150\,\mu\mathrm{m}$ fraction (green) are plotted together in the same graph.

Figure S14: Relative abundances of genera of benthic Foraminifera from the Pefka E section. The abundances within the $>\!125\,\mu\mathrm{m}$ fraction (purple) and the $>\!150\,\mu\mathrm{m}$ fraction (green) are plotted together in the same graph.

Figure S15: Relative abundances of genera of benthic Foraminifera from the Pefka E section. The abundances within the $>\!125\,\mu\mathrm{m}$ fraction (purple) and the $>\!150\,\mu\mathrm{m}$ fraction (green) are plotted together in the same graph.

Figure S16: Relative abundances of genera of benthic Foraminifera from the Pefka E section. The abundances within the $>\!125\,\mu\mathrm{m}$ fraction (purple) and the $>\!150\,\mu\mathrm{m}$ fraction (green) are plotted together in the same graph.

Figure S17: Relative abundances of genera of benthic Foraminifera from the Pefka E section. The abundances within the $>\!125\,\mu\mathrm{m}$ fraction (purple) and the $>\!150\,\mu\mathrm{m}$ fraction (green) are plotted together in the same graph.

Figure S18: Relative abundances of genera of benthic Foraminifera from the Pefka E section. The abundances within the $>\!125\,\mu\mathrm{m}$ fraction (purple) and the $>\!150\,\mu\mathrm{m}$ fraction (green) are plotted together in the same graph.