

Supplementary Material

Mechanically Robust and Thermally Stable Colorful Superamphiphobic Coatings

Ning Tian, 1,2 Penglin Zhang,2 and Junping Zhang 1*

- * Correspondence: Junping Zhang jpzhang@licp.cas.cn
- 1 Supplementary Figures and Tables
- 1.1 Supplementary Figures

Supplementary Figure S1. TEM images of (a, b) PAL/IOR and (c) PAL/IOR@fluoroPOS.

Supplementary Figure S2. SEM images of PAL.

Supplementary Figure S3 (a) Variation of $CA_{n\text{-decane}}$ and $SA_{n\text{-decane}}$ of the PAL/IOR@fluoroPOS coatings with C_{PFDTES} . SEM images of the PAL/IOR@fluoroPOS coatings with a C_{PFDTES} of (b-c) 9.1 mM, (d-e) 27.2 mM and (f-g) 36.3 mM. $C_{PAL/IOR} = 14 \text{ g L}^{-1}$, $t_{grinding} = 20 \text{ min}$, $C_{TEOS} = 4.5 \text{ mM}$.

Supplementary Figure S4. (a) Variation of $CA_{n\text{-decane}}$ and $SA_{n\text{-decane}}$ of the PAL/IOR@fluoroPOS coatings with C_{TEOS} . SEM images of the PAL/IOR@fluoroPOS coatings with a C_{TEOS} of (b-c) 0 mM, (d-e) 4.5 mM and (f-g) 8.9 mM. $C_{\text{PAL/IOR}} = 14 \text{ g L}^{-1}$, $t_{\text{grinding}} = 20 \text{ min}$, $C_{\text{PFDTES}} = 27.2 \text{ mM}$.

Supplementary Figure S5. (a) Schematic illustration of the falling sand test. (b) Variation of $CA_{n-decane}$ and $SA_{n-decane}$ of the PAL/IOR@fluoroPOS coating with weight of sand in the falling sand test.

Supplementary Figure S6. (a) XPS spectra of the PAL/IOR@fluoroPOS coatings after immersed in various liquids for 24 h with the original coating for comparison. $C_{\text{PAL/IOR}} = 14 \text{ g L}^{-1}$, $t_{\text{grinding}} = 20 \text{ min}$, $C_{\text{PFDTES}} = 27.2 \text{ mM}$, $C_{\text{TEOS}} = 4.5 \text{ mM}$.

Supplementary Figure S7. SEM images of PAL/IOR@fluoroPOS coatings after immersion in (a-b) 1 M HCl and (c-d) 1M NaOH for 24 h. $C_{PAL/IOR} = 14 \text{ g L}^{-1}$, $t_{grinding} = 20 \text{ min}$, $C_{PFDTES} = 27.2 \text{ mM}$, $C_{TEOS} = 4.5 \text{ mM}$.

Supplementary Figure S8. Digital images of the PAL/IOR@fluoroPOS coatings after immersed in different liquids or exposed to UV irradiation for 24 h. $C_{PAL/IOR} = 14 \text{ g L}^{-1}$, $t_{grinding} = 20 \text{ min}$, $C_{PFDTES} = 27.2 \text{ mM}$, $C_{TEOS} = 4.5 \text{ mM}$.

Supplementary Figure S9. PAL/IOR@fluoroPOS coatings on different substrates. $C_{\text{PAL/IOR}} = 14 \text{ g}$ L⁻¹, $t_{\text{grinding}} = 20 \text{ min}$, $C_{\text{PFDTES}} = 27.2 \text{ mM}$, $C_{\text{TEOS}} = 4.5 \text{ mM}$.

Supplementary Figure S10. Soybean oil, *n*-dodecane and *n*-decane droplets (left to right) on the superamphiphobic coatings based on (a) IOR, (b) IOY, (c) IOO, (d) IOBR and (e) IOBL. $C_{\text{PAL/iron}}$ oxides = 14 g L⁻¹, t_{grinding} = 20 min, C_{PFDTES} = 27.2 mM, C_{TEOS} = 4.5 mM.

1.2 Supplementary Tables

Supplementary Table S1. CAs and SAs of the frequently used oils in our daily life on the PAL/IOR@fluoro POS coating at 20 °C. $C_{PAL/IOR} = 14 \text{ g L}^{-1}$, $t_{grinding} = 20 \text{ min}$, $C_{PAL/IOR} = 27.2 \text{ mM}$, $C_{TEOS} = 4.5 \text{ mM}$.

Liquids	CAs / °	SAs / °
Rapeseed oil	160 ±2.5	7.2 ±1.4
Diesel	163 ± 2.3	8.5 ± 1.2
Vacuum pump oil	158 ± 2.6	9.7 ± 0.58
Soybean oil	160 ±2.5	15.0 ± 1.2

Supplementary Table S2. $CA_{n\text{-decane}}$ and $SA_{n\text{-decane}}$ of the PAL/IOR@fluoroPOS after treatment under different conditions for 24 h. $C_{PAL/IOR} = 14 \text{ g L}^{-1}$, $t_{grinding} = 20 \text{ min}$, $C_{PFDTES} = 27.2 \text{ mM}$, $C_{TEOS} = 4.5 \text{ mM}$.

	$\mathrm{CA}_{n ext{-decane}}$ / $^{\circ}$	$SA_{n ext{-decane}} / \circ$
Original coating	153 ± 2.7	11.8 ± 2.8
1 M HCl _(aq) , 24 h	145 ± 2.5	32.7 ± 2.1
1 M NaOH _(aq) , 24 h	145 ± 2.7	32.0 ± 2.1
Saturated NaCl _(aq) , 24 h	146 ±4.0	19.0 ± 0.6
98 % H ₂ SO ₄ , 24 h	150 ± 3.0	20.0 ± 1.5
Saturated NaOH _(aq) , 24 h	148 ± 2.0	29.7 ± 0.6
Ethanol, 24 h	147 ± 1.9	28.0 ± 4.2
Toluene, 24 h	149 ± 1.2	19.7 ± 0.6

Supplementary Table S3. $CA_{n-decane}$ and $SA_{n-decane}$ of the PAL/IOR@fluoroPOS coatings on different substrates. $C_{PAL/IOR} = 14 \text{ g L}^{-1}$, $t_{grinding} = 20 \text{ min}$, $C_{PFDTES} = 27.2 \text{ mM}$, $C_{TEOS} = 4.5 \text{ mM}$.

Substrates	CA _{n-decane} / °	$SA_{n ext{-decane}}/\circ$
Glass slide	153 ±2.7	11.8 ±2.8
Office paper	150 ± 3.1	13.3 ±1.2
Aluminum foil	152 ± 2.3	17.5 ± 1.5
Wood plate	154 ±4.0	19.0 ± 0.6

Polyester textile 146 ± 3.2 16.5 ± 1.5