Supplementary Material Mechanically Robust and Thermally Stable Colorful Superamphiphobic Coatings Ning Tian, 1,2 Penglin Zhang,2 and Junping Zhang 1* - * Correspondence: Junping Zhang jpzhang@licp.cas.cn - 1 Supplementary Figures and Tables - 1.1 Supplementary Figures **Supplementary Figure S1.** TEM images of (a, b) PAL/IOR and (c) PAL/IOR@fluoroPOS. Supplementary Figure S2. SEM images of PAL. **Supplementary Figure S3** (a) Variation of $CA_{n\text{-decane}}$ and $SA_{n\text{-decane}}$ of the PAL/IOR@fluoroPOS coatings with C_{PFDTES} . SEM images of the PAL/IOR@fluoroPOS coatings with a C_{PFDTES} of (b-c) 9.1 mM, (d-e) 27.2 mM and (f-g) 36.3 mM. $C_{PAL/IOR} = 14 \text{ g L}^{-1}$, $t_{grinding} = 20 \text{ min}$, $C_{TEOS} = 4.5 \text{ mM}$. **Supplementary Figure S4.** (a) Variation of $CA_{n\text{-decane}}$ and $SA_{n\text{-decane}}$ of the PAL/IOR@fluoroPOS coatings with C_{TEOS} . SEM images of the PAL/IOR@fluoroPOS coatings with a C_{TEOS} of (b-c) 0 mM, (d-e) 4.5 mM and (f-g) 8.9 mM. $C_{\text{PAL/IOR}} = 14 \text{ g L}^{-1}$, $t_{\text{grinding}} = 20 \text{ min}$, $C_{\text{PFDTES}} = 27.2 \text{ mM}$. **Supplementary Figure S5.** (a) Schematic illustration of the falling sand test. (b) Variation of $CA_{n-decane}$ and $SA_{n-decane}$ of the PAL/IOR@fluoroPOS coating with weight of sand in the falling sand test. **Supplementary Figure S6.** (a) XPS spectra of the PAL/IOR@fluoroPOS coatings after immersed in various liquids for 24 h with the original coating for comparison. $C_{\text{PAL/IOR}} = 14 \text{ g L}^{-1}$, $t_{\text{grinding}} = 20 \text{ min}$, $C_{\text{PFDTES}} = 27.2 \text{ mM}$, $C_{\text{TEOS}} = 4.5 \text{ mM}$. **Supplementary Figure S7.** SEM images of PAL/IOR@fluoroPOS coatings after immersion in (a-b) 1 M HCl and (c-d) 1M NaOH for 24 h. $C_{PAL/IOR} = 14 \text{ g L}^{-1}$, $t_{grinding} = 20 \text{ min}$, $C_{PFDTES} = 27.2 \text{ mM}$, $C_{TEOS} = 4.5 \text{ mM}$. **Supplementary Figure S8.** Digital images of the PAL/IOR@fluoroPOS coatings after immersed in different liquids or exposed to UV irradiation for 24 h. $C_{PAL/IOR} = 14 \text{ g L}^{-1}$, $t_{grinding} = 20 \text{ min}$, $C_{PFDTES} = 27.2 \text{ mM}$, $C_{TEOS} = 4.5 \text{ mM}$. **Supplementary Figure S9.** PAL/IOR@fluoroPOS coatings on different substrates. $C_{\text{PAL/IOR}} = 14 \text{ g}$ L⁻¹, $t_{\text{grinding}} = 20 \text{ min}$, $C_{\text{PFDTES}} = 27.2 \text{ mM}$, $C_{\text{TEOS}} = 4.5 \text{ mM}$. **Supplementary Figure S10.** Soybean oil, *n*-dodecane and *n*-decane droplets (left to right) on the superamphiphobic coatings based on (a) IOR, (b) IOY, (c) IOO, (d) IOBR and (e) IOBL. $C_{\text{PAL/iron}}$ oxides = 14 g L⁻¹, t_{grinding} = 20 min, C_{PFDTES} = 27.2 mM, C_{TEOS} = 4.5 mM. ## 1.2 Supplementary Tables **Supplementary Table S1.** CAs and SAs of the frequently used oils in our daily life on the PAL/IOR@fluoro POS coating at 20 °C. $C_{PAL/IOR} = 14 \text{ g L}^{-1}$, $t_{grinding} = 20 \text{ min}$, $C_{PAL/IOR} = 27.2 \text{ mM}$, $C_{TEOS} = 4.5 \text{ mM}$. | Liquids | CAs / ° | SAs / ° | |-----------------|---------------|----------------| | Rapeseed oil | 160 ±2.5 | 7.2 ±1.4 | | Diesel | 163 ± 2.3 | 8.5 ± 1.2 | | Vacuum pump oil | 158 ± 2.6 | 9.7 ± 0.58 | | Soybean oil | 160 ±2.5 | 15.0 ± 1.2 | **Supplementary Table S2.** $CA_{n\text{-decane}}$ and $SA_{n\text{-decane}}$ of the PAL/IOR@fluoroPOS after treatment under different conditions for 24 h. $C_{PAL/IOR} = 14 \text{ g L}^{-1}$, $t_{grinding} = 20 \text{ min}$, $C_{PFDTES} = 27.2 \text{ mM}$, $C_{TEOS} = 4.5 \text{ mM}$. | | $\mathrm{CA}_{n ext{-decane}}$ / $^{\circ}$ | $SA_{n ext{-decane}} / \circ$ | |--|---|-------------------------------| | Original coating | 153 ± 2.7 | 11.8 ± 2.8 | | 1 M HCl _(aq) , 24 h | 145 ± 2.5 | 32.7 ± 2.1 | | 1 M NaOH _(aq) , 24 h | 145 ± 2.7 | 32.0 ± 2.1 | | Saturated NaCl _(aq) , 24 h | 146 ±4.0 | 19.0 ± 0.6 | | 98 % H ₂ SO ₄ , 24 h | 150 ± 3.0 | 20.0 ± 1.5 | | Saturated NaOH _(aq) , 24 h | 148 ± 2.0 | 29.7 ± 0.6 | | Ethanol, 24 h | 147 ± 1.9 | 28.0 ± 4.2 | | Toluene, 24 h | 149 ± 1.2 | 19.7 ± 0.6 | **Supplementary Table S3.** $CA_{n-decane}$ and $SA_{n-decane}$ of the PAL/IOR@fluoroPOS coatings on different substrates. $C_{PAL/IOR} = 14 \text{ g L}^{-1}$, $t_{grinding} = 20 \text{ min}$, $C_{PFDTES} = 27.2 \text{ mM}$, $C_{TEOS} = 4.5 \text{ mM}$. | Substrates | CA _{n-decane} / ° | $SA_{n ext{-decane}}/\circ$ | |---------------|----------------------------|-----------------------------| | Glass slide | 153 ±2.7 | 11.8 ±2.8 | | Office paper | 150 ± 3.1 | 13.3 ±1.2 | | Aluminum foil | 152 ± 2.3 | 17.5 ± 1.5 | | Wood plate | 154 ±4.0 | 19.0 ± 0.6 | Polyester textile 146 ± 3.2 16.5 ± 1.5