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APPENDIX A: DERIVATIONS FOR THE SIGNAL DECAY TENSORS

Here, we provide the derivations of the signal decay tensors, V , for regimes A, B, and C, respectively. Fig.
5 illustrates the decay tensors as ellipses for an examplary selection of planar curves.

Regime A and D� ⌧ R2
c

For small values of q2D�, the exponent in (3) is small, so the expression can be rewritten to leading
order, by moving the averaging integral into the exponent, as

E(q) ⇡ e

�D� 1
`

R `
0 ds q|t̂(s)t̂|(s)q

. (20)

In this small-q regime, the form E(q) = e

�q|V q (1) identifies the decay tensor Vij as

Vij =
D�

`

Z `

0
ds

dri(s)

ds

drj(s)

ds

. (21)

The integrand in the above expression is a rank-1 tensor by construction. For a general curve, the integral
mixes together different rank-1 tensors resulting in a Vij of higher rank, the only exception being a straight
line. Note that since dr/ds is a unit vector, the trace of the above matrix is D�. The orientationally-
averaged signal (2) in the small q2D� regime is just ¯

E(q) ⇡ e

�q2 TrV /3
= e

�q2D�/3.

Regime B

The three-dimensional Fourier transform of the spin density (13) is given by

⇢̃(q) =
1

`

Z `

0
ds e

�iq·r(s)
, (22)

which is substituted into E(q) = |⇢̃(q)|2, yielding the signal decay

E(q) =
1

`

2

Z `

0
ds

Z `

0
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0
e

�iq·
[

R(s)�R(s0)
]

. (23)

In this expression, we employed the change of variables R(s) = r(s) �Rcm, where Rcm is the center
of mass of the curve. For small q values, the exponential can be replaced by its Maclaurin series up to
quadratic order. Term-by-term evaluation of the double integral then yields

E(q) ⇡ 1� 1

`

Z `

0
ds [q ·R(s)]

2

⇡ exp

 
�1

`

Z `

0
ds q|R(s)R(s)

|q

!
, (24)

which leads to the identification of the signal decay tensor given by

Vij =
1

`

Z `

0
dsRi(s)Rj(s) . (25)
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A B C

Figure 5. Figure showing three planar curves (left column), and ellipses depicting the signal decay tensor
in the three regimes A, B, and C (see equations (21), (25), and (19)) considered. Here, the ellipses for the
tensors were rescaled so as to produce a depiction of the same size.

Like in the previous regime, Vij is rank-1 only for straight fibers. The trace of the above matrix is
R

2
g, by definition. The orientationally-averaged signal (2) in the small qRg regime is then just ¯

E(q) ⇡
e

�q2 TrV /3
= e

�(qRg)
2/3.

Regime C

Similar to regime B, the signal decay tensor Vij is the variance of a probability distribution; this time
the center of mass distribution, pcm(⇠, �). Using the definition (16), the variance h⇠i⇠ji � h⇠ii h⇠ji can be
calculated as

Vij =
2
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2
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dt1
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dt2
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0
ds1
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0
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�
, (26)

where [65]
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is the propagator from arc-length coordinate s

0 to s in a time t. The time integrals in (26) are done easily,
and after further dropping exponentially decaying temporal terms on account of D� � `

2, one obtains
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`

. (28)

It turns out that the sum over n admits a closed form, which results in the final expression (19).
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APPENDIX B: COMPUTING THE SIGNAL FOR DIFFUSION ON A CIRCLE

We employed the multiple correlation function (MCF) framework [66, 67, 68, 69] for estimating the signal
attenuation due to diffusion taking place on a circle whose radius is denoted by R. This problem can be
considered as the limiting case of the problem involving diffusion within circular layers of finite thickness
[70].

The evolution of magnetization is governed by the Bloch-Torrey equation [71]. For our problem, it can
be written as

@M

@t

=

D

R

2

@

2
M

@�

2 � i�RG(t) cos�M(�, t) , (29)

where we assumed that the gradients are applied along the x direction. The MCF approach considers the
eigenproblem

@

2
uk(�)

@�

2 = ��kuk(�) (30)

along with the periodicity condition uk(� + 2⇡) = uk(�), which is valid for the circular geometry. The
eigenvalues are simply k

2, while the eigenfunctions are uk(�) = (2⇡)

�1/2
e

ik�, where k is any integer.

The MCF technique is based on expressing the problem of computing the signal attenuation in this
eigenbasis. The two terms on the right hand side of (29) lead to two infinite-dimensional matrix operators,
which we shall denote by ⇤ and A, respectively. The components of these operators are given by

⇤m,n = n

2
�m,n , and (31)

Am,n =

1

2

(�m,n+1 + �m,n�1) . (32)

The signal for a Stejskal-Tanner measurement is given simply by the element of the matrix

e

�⇤D�/R2�iqRA
e

�⇤D(���)/R2
e

�⇤D�/R2+iqRA (33)

identified by the indices 0 and 0.

APPENDIX C: ON THE DEBYE-POROD LAW

For a bipolar pulsed gradient sequence, the signal E(q) is the Fourier transform of a displacement
probability distribution, P (r), often referred to as the average propagator (between center of mass positions
if pulses are of long duration [40]). When the specimen is macroscopically isotropic, e.g., if it consists of a
uniform orientational distribution of identical compartments, the signal becomes

¯

E(q) = 4⇡

Z 1

0
dr r

2 sin(qr)

qr

¯

P (r) , (34)

using the purely radial term in the spherical wave expansion of e�iq·r, where ¯

P (r) = (4⇡)

�1
R
d⌦P (r)

is the orientational average of P (r). In the physics of scattering, this formula is identical to that of
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Özarslan et al. Neural projections and diffusion MRI: Supplementary Material

the scattered intensity originating from a dilute aggregation of randomly-oriented scatterers, with P (r)
identified as the auto-correlation function of the scattering density in proper units [37, 38].

Depending on the analytical properties of the function ¯

P (r), it may be possible to develop the signal
(34) into an asymptotic expansion in powers of q�1. This is achieved by repeated integrations by parts,
exploiting the trivial integral of the sine (or cosine) in the integrand, each repetition yielding (possibly)
a term proportional to the next power of q�1. For diffusion in a finite 3D compartment, this procedure
is permissible and yields a leading term ⇠ q

�4 as q ! 1, whose coefficient was shown to be related
to the return-to-origin probability at the surface [27], which is a generalization of what is known as the
Debye-Porod law in the field of scattering [37, 38]. This particular exponent of �4 is expected universally,
when the measurement is done with a resolution (⇠ q

�1) substantially finer than the smallest dimension of
the compartment. Below this cutoff, the compartment will appear effectively lower dimensional, and ¯

E(q)

may exhibit an appreciable stretch of q-values where it exhibits a slower power law decay, depending on the
geometry. This is not in conflict with the Debye-Porod law, but simply outside its domain of applicability.

For lower dimensional objects, specific examples of rod and flat disk geometries indicate that ¯

P is of
lower regularity. This means that the procedure of repeated integrations by parts either stops earlier or is
even not applicable at all. As a consequence, the leading powers of q in the asymptotic expansion will
not be �4, and for the 1D and 2D cases, [37], these leading powers were indeed found to be �1 and �2,
respectively.

Gaussian pores

Given how universal the Debye-Porod law is, it may appear contradictory that the orientationally averaged
signal (2) arising from 3D Gaussian compartments does not exhibit a q

�4 decay, but rather a power q�1

modulated by a decaying (quadratic) exponential.

To understand this, it is useful to consider more explicitly the asymptotic expansion of the signal (34),
rearranged here slightly as,

¯

E(q) =

4⇡

q

Z 1

0
dr sin(qr)r

¯

P (r) . (35)

As mentioned earlier, the asymptotic expansion procedure via integration by parts relies (to a certain
extent) on the smoothness of the function ¯

P (r). In the Gaussian case where the displacement distribution
P (r) / e

� 1
2r

|V �1r, the orientational average ¯

P (r) has the same form as (2), but with different variables:

¯

P (r) / r

�1
e

�k20r
2
erf(k1r) . (36)

Thus, the natural extension (to the space of real numbers R) of r ¯P (r) is a smooth odd function which,
together with all its derivatives, vanish at infinity. Repeated partial integration of (35) shows that for any
even N ,

¯

E(q) =

4⇡

q

2

N/2X

n=0

✓�1

q

2

◆n
d

2n

dr

2n

⇥
r

¯

P (r)

⇤ ���
r=0

+

(�1)

N/2

q

N+2

Z 1

0
dr cos(qr)

d

N+1

dr

N+1

⇥
r

¯

P (r)

⇤
. (37)

But since r

¯

P (r) is odd, all even derivatives vanish at r = 0. Hence, for any even N ,

| ¯E(q)|  1

q

N+2

Z 1

0
dr

����cos(qr)
d

N+1

dr

N+1

⇥
r

¯

P (r)

⇤���� 
CN

q

N+2
(38)
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for some constant CN . This means that ¯

E(q) decays faster than any polynomial6. This observation implies
that for truly Gaussian compartments [73] or long pulse acquisitions [43] (regime C), the asymptotic decay
of ¯

E(q) should be faster than any polynomial, which is indeed true for the expression in Eq. (2).
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Supplementary material for Özarslan E, et al. (2018) Front. Phys. 6:17. doi: 10.3389/fphy.2018.00017 5
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[62] Álvarez GA, Shemesh N, Frydman L. Internal gradient distributions: A susceptibility-derived
tensor delivering morphologies by magnetic resonance. Sci Rep 7 (2017) 3311. doi:10.1038/
s41598-017-03277-9.

[63] Pathak AP, Ward BD, Schmainda KM. A novel technique for modeling susceptibility-based contrast
mechanisms for arbitrary microvascular geometries: the finite perturber method. NeuroImage 40
(2008) 1130–43. doi:10.1016/j.neuroimage.2008.01.022.

[64] Kurz FT, Kampf T, Buschle LR, Schlemmer HP, Bendszus M, Heiland S, et al. Generalized mo-
ment analysis of magnetic field correlations for accumulations of spherical and cylindrical magnetic
perturbers. Front Phys 4 (2016) 46.

[65] Tanner JE, Stejskal EO. Restricted self-diffusion of protons in colloidal systems by the pulsed-gradient,
spin-echo method. J Chem Phys 49 (1968) 1768–1777.

[66] Robertson B. Spin-echo decay of spins diffusing in a bounded region. Phys Rev 151 (1966) 273–277.
[67] Barzykin AV. Theory of spin echo in restricted geometries under a step-wise gradient pulse sequence.

J Magn Reson 139 (1999) 342–353. doi:10.1006/jmre.1999.1778.
[68] Grebenkov DS. NMR survey of reflected Brownian motion. Rev Mod Phys 79 (2007) 1077–1137.
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