Frontiers
Browse

Using Administrative Data to Predict Suicide After Psychiatric Hospitalization in the Veterans Health Administration System

Posted on 2020-05-06 - 15:26

There is a very high suicide rate in the year after psychiatric hospital discharge. Intensive postdischarge case management programs can address this problem but are not cost-effective for all patients. This issue can be addressed by developing a risk model to predict which inpatients might need such a program. We developed such a model for the 391,018 short-term psychiatric hospital admissions of US veterans in Veterans Health Administration (VHA) hospitals 2010–2013. Records were linked with the National Death Index to determine suicide within 12 months of hospital discharge (n=771). The Super Learner ensemble machine learning method was used to predict these suicides for time horizon between 1 week and 12 months after discharge in a 70% training sample. Accuracy was validated in the remaining 30% holdout sample. Predictors included VHA administrative variables and small area geocode data linked to patient home addresses. The models had AUC=.79–.82 for time horizons between 1 week and 6 months and AUC=.74 for 12 months. An analysis of operating characteristics showed that 22.4%–32.2% of patients who died by suicide would have been reached if intensive case management was provided to the 5% of patients with highest predicted suicide risk. Positive predictive value (PPV) at this higher threshold ranged from 1.2% over 12 months to 3.8% per case manager year over 1 week. Focusing on the low end of the risk spectrum, the 40% of patients classified as having lowest risk account for 0%–9.7% of suicides across time horizons. Variable importance analysis shows that 51.1% of model performance is due to psychopathological risk factors accounted, 26.2% to social determinants of health, 14.8% to prior history of suicidal behaviors, and 6.6% to physical disorders. The paper closes with a discussion of next steps in refining the model and prospects for developing a parallel precision treatment model.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email

Usage metrics

Frontiers in Psychiatry

AUTHORS (21)

Ronald C. Kessler
Mark S. Bauer
Todd M. Bishop
Olga V. Demler
Steven K. Dobscha
Sarah M. Gildea
Joseph L. Goulet
Elizabeth Karras
Julie Kreyenbuhl
Sara J. Landes
Howard Liu
Alex R. Luedtke
Patrick Mair
William H. B. McAuliffe
Matthew Nock
Maria Petukhova
Wilfred R. Pigeon
Nancy A. Sampson
Jordan W. Smoller
Lauren M. Weinstock
need help?