Frontiers
Browse

Linc00662 Promotes Tumorigenesis and Progression by Regulating miR-497-5p/AVL9 Axis in Colorectal Cancer

Posted on 2020-01-24 - 14:47
Background

Recently, multiple lines of evidence have demonstrated that linc00662 serves as an oncogene in various cancers. However, the exact mechanism of oncogenesis mediated by linc00662 in colorectal cancer (CRC) remains unknown. In this study, we aimed to explore the biological role of linc00662 in the regulation of CRC progression.

Methods

Both gene expression omnibus (GEO) and the cancer genome atlas (TCGA) datasets were used to evaluate the expression of linc00662. RT-qPCR was used to analyze the expression of linc00662, miR-497-5p, and AVL9 in CRC clinical samples and cell lines. Cell Counting Kit-8 (CCK-8), flow cytometry, transwell assay, and xenograft model were used to investigate the effect of linc00662 on CRC cell proliferation, cell cycle, and metastasis. Western blot analysis was used to analyze the expression of the epithelial-mesenchymal transition (EMT)-associated markers. Furthermore, bioinformatics analysis and mechanism assays were used to elucidate the underlying mechanism. Dual-luciferase reporter assays were used to analyze the regulatory relationships among linc00662, miR-497-5p, and AVL9.

Results

In this study, we found that the expression of linc00662 was significantly upregulated in CRC tissues compared to normal tissues and positively correlated with tissue differentiation, T stage, and lymphatic metastasis. Further, our data showed that the expression of linc00662 was positively associated with lymph node metastasis, TMN stage, and poor-moderate differentiation. Patients with higher linc00662 expression level were more likely to have poorer overall survival. Knockdown of linc00662 inhibited CRC cell growth, induced cell apoptosis, triggered cell cycle arrest at G2/M phase, and suppressed cell migration and invasion through regulating the EMT pathway. Further, mechanistic studies revealed that knockdown of linc00662 significantly reduced the expression of AVL9, a direct target of miR-497-5p.

Conclusions

Linc00662 was significantly upregulated in CRC, and mediated CRC progression and metastasis by competing with miR-497-5p to modulate the expression of AVL9. Therefore, our result sheds light on the potential application of linc00662 in CRC diagnosis and therapy.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?