Frontiers
Browse

Dendronized Silver Nanoparticles as Bacterial Membrane Permeabilizers and Their Interactions With P. aeruginosa Lipopolysaccharides, Lysozymes, and Phage-Derived Endolysins

Posted on 2019-12-06 - 08:45

Antimicrobial proteins, like lysozymes produced by animals or bacteriophage lysins, enable the degradation of bacterial peptidoglycan (PG) and, consequently, lead to bacterial cell lysis. However, the activity of those enzymes is not satisfactory against gram-negative bacteria because of the presence of an outer membrane (OM) barrier. Lytic enzymes can therefore be combined with membrane-disrupting agents, such as dendritic silver nanoparticles. Nevertheless, a lipopolysaccharide (LPS), especially the smooth type, could be the main hindrance for highly charged nanoparticles to get direct access to the bacterial OM and to help lytic enzymes to reach their target PG. Herein, we have investigated the interactions of PEGylated carbosilane dendritic nanoparticles with P. aeruginosa 010 LPS in the presence of lysozymes and KP27 endolysin to find out the main aspects of the OM destabilization process. Our results showed that PEGylated dendronized AgNPs overcame the LPS barrier and enhanced the antibacterial effect of endolysin more efficiently than unPEGylated nanoparticles.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email

Usage metrics

Frontiers in Microbiology

AUTHORS (9)

Karol Ciepluch
Kinga Skrzyniarz
Andrea Barrios-Gumiel
Sara Quintana
Javier Sánchez-Nieves
F. Javier de la Mata
Barbara Maciejewska
Zuzanna Drulis-Kawa
Michał Arabski
need help?