table_3_Combination of Cytokine-Induced Killer Cells and Programmed Cell Death-1 Blockade Works Synergistically to Enhance Therapeutic Efficacy in Metastatic Renal Cell Carcinoma and Non-Small Cell Lung Cancer.PDF


Programmed cell death-1 (PD-1) inhibition therapy has changed the treatment paradigm of metastatic renal cell carcinoma (MRCC) and non-small cell lung cancer (NSCLC). However, attempts to use the drug as a single agent have achieved only limited clinical success. To further enhance the clinical benefits of monotherapy, combination therapies will likely be necessary. Cytokine-induced killer (CIK) cells are a heterogeneous subset of ex vivo expanded T lymphocytes that have been shown to prolong the survival of cancer patients. We are conducting a study to evaluate the efficacy of PD-1 inhibitor in combination with CIK cells in relapsed/refractory MRCC and NSCLC and to analyze potential biomarkers to predict which patients will benefit most from the combined therapy.

Case presentation

The results of two patients treated in an ongoing clinical trial for MRCC and NSCLC are described here. The tumor biopsy from Patient 1 exhibited moderate CD3+ T cell infiltration, but no PD-1 or PD-L1 expression. The tumor cells from Patient 2 strongly expressed PD-L1, and there was extensive tumor infiltration by CD3+ T cells; however, no PD-1 staining was seen. Non-synonymous single nucleotide variant (nsSNVs), along with higher indel mutations, in Patient 1 and nsSNVs along with higher tumor mutation burden in Patient 2 correlate with tumor-infiltrating CD3+ lymphocyte density. Patient 1 achieved a complete response, and Patient 2 achieved a near-complete response.


A PD-1 inhibitor in combination with CIK cells led to potent antitumor activity in MRCC and NSCLC; CD3+ T cell infiltration in baseline tumor biopsies is a potential predictive biomarker. This approach is being further investigated in an ongoing phase I trial.