Presentation_1_The Small GTPases Rab27b Regulates Mitochondrial Fatty Acid Oxidative Metabolism of Cardiac Mesenchymal Stem Cells.pdf
Cardiac mesenchymal stem cells (C-MSCs) are endogenous cardiac stromal cells that play a crucial role in maintaining normal cardiac function. Rab27b is a member of the small GTPase Rab family that controls membrane trafficking and the secretion of exosomes. However, its role in regulating energy metabolism in C-MSC is unclear. In this study, we analyzed mitochondrial oxidative phosphorylation by quantifying cellular oxygen consumption rate (OCR) and quantified the extracellular acidification rate (ECAR) in C-MSC with/without Rab27b knockdown. Knockdown of Rab27b increased glycolysis, but significantly reduced mitochondrial oxidative phosphorylation (OXPHOS) with loss of mitochondrial membrane potential in C-MSC. Furthermore, knockdown of Rab27b reduced H3k4me3 expression in C-MSC and selectively decreased the expression of the essential genes involved in β-oxidation, tricarboxylic acid cycle (TCA), and electron transport chain (ETC). Taken together, our findings highlight a novel role for Rab27b in maintaining fatty acid oxidation in C-MSCs.
History
References
- https://doi.org//10.1007/s12013-013-9750-1
- https://doi.org//10.1038/s41569-018-0044-6
- https://doi.org//10.1016/j.bbabio.2012.12.002
- https://doi.org//10.1016/j.mehy.2015.12.022
- https://doi.org//10.1016/j.bbrc.2013.01.015
- https://doi.org//10.1038/nature13909
- https://doi.org//10.1016/j.mcp.2019.01.003
- https://doi.org//10.1007/978-1-4614-3573-0_6
- https://doi.org//10.1242/dmm.036426
- https://doi.org//10.1126/science.aaw2586
- https://doi.org//10.1111/tra.12083
- https://doi.org//10.1371/journal.pone.0170628
- https://doi.org//10.1007/s12265-018-9824-y
- https://doi.org//10.1007/s12265-018-9822-0
- https://doi.org//10.1016/S0735-1097(01)01803-4
- https://doi.org//10.2337/db19-0423
- https://doi.org//10.1152/physrev.00015.2009
- https://doi.org//10.3389/fphys.2019.00750
- https://doi.org//10.1016/j.yjmcc.2010.09.023
- https://doi.org//10.1002/cyto.a.22205
- https://doi.org//10.1038/ncb2000
- https://doi.org//10.1016/j.nano.2019.102072
- https://doi.org//10.1038/nature03354
- https://doi.org//10.1038/aps.2018.19
- https://doi.org//10.1038/aps.2018.18
- https://doi.org//10.1016/j.bbadis.2018.04.016
- https://doi.org//10.1161/CIR.0b013e318267e99f
- https://doi.org//10.1007/s12265-018-9826-9
- https://doi.org//10.3791/59320
- https://doi.org//10.1007/7651_2019_226
- https://doi.org//10.1038/ncomms15287
- https://doi.org//10.1038/nature08039
- https://doi.org//10.1016/j.bbrc.2007.05.216
- https://doi.org//10.1016/j.athoracsur.2005.02.072
- https://doi.org//10.1016/j.regpep.2003.09.005
- https://doi.org//10.3892/ijmm.2017.3080
- https://doi.org//10.1155/2016/8167273
- https://doi.org//10.1016/j.cardiores.2003.11.014
- https://doi.org//10.1152/physrev.1992.72.4.881
- https://doi.org//10.1016/j.jacc.2018.08.2171
- https://doi.org//10.1080/20013078.2017.1344087
- https://doi.org//10.1038/nm.3863
- https://doi.org//10.1007/s10545-010-9104-8
- https://doi.org//10.1016/j.ijcard.2015.05.020
- https://doi.org//10.1016/j.freeradbiomed.2004.09.011
- https://doi.org//10.1016/j.cell.2017.08.035