Presentation1.pdf
Boolean networks are important models of biochemical systems, located at the high end of the abstraction spectrum. A number of Boolean gene networks have been inferred following essentially the same method. Such a method first considers experimental data for a typically underdetermined “regulation” graph. Next, Boolean networks are inferred by using biological constraints to narrow the search space, such as a desired set of (fixed-point or cyclic) attractors. We describe Griffin, a computer tool enhancing this method. Griffin incorporates a number of well-established algorithms, such as Dubrova and Teslenko's algorithm for finding attractors in synchronous Boolean networks. In addition, a formal definition of regulation allows Griffin to employ “symbolic” techniques, able to represent both large sets of network states and Boolean constraints. We observe that when the set of attractors is required to be an exact set, prohibiting additional attractors, a naive Boolean coding of this constraint may be unfeasible. Such cases may be intractable even with symbolic methods, as the number of Boolean constraints may be astronomically large. To overcome this problem, we employ an Artificial Intelligence technique known as “clause learning” considerably increasing Griffin's scalability. Without clause learning only toy examples prohibiting additional attractors are solvable: only one out of seven queries reported here is answered. With clause learning, by contrast, all seven queries are answered. We illustrate Griffin with three case studies drawn from the Arabidopsis thaliana literature. Griffin is available at: http://turing.iimas.unam.mx/griffin.
History
References
- https://doi.org//10.1016/S0022-5193(03)00035-3
- https://doi.org//10.1199/tab.0127
- https://doi.org//10.1186/1471-2105-12-490
- https://doi.org//10.1186/1752-0509-4-134
- https://doi.org//10.1038/srep42023
- https://doi.org//10.3389/fpls.2013.00110
- https://doi.org//10.1371/journal.pone.0171097
- https://doi.org//10.1371/journal.pone.0066031
- https://doi.org//10.1016/j.jtbi.2004.04.003
- https://doi.org//10.1515/BC.2001.161
- https://doi.org//10.1126/science.1119959
- https://doi.org//10.1098/rsif.2008.0132.focus
- https://doi.org//10.1145/2043174.2043195
- https://doi.org//10.1016/0890-5401(92)90017-A
- https://doi.org//10.1093/bioinformatics/btl172
- https://doi.org//10.3389/fpls.2012.00155
- https://doi.org//10.1016/j.tcs.2004.03.063
- https://doi.org//10.1371/journal.pone.0042095
- https://doi.org//10.1007/978-3-642-28792-3_4
- https://doi.org//10.1137/1.9780898718546
- https://doi.org//10.3233/978-1-58603-929-5-403
- https://doi.org//10.1371/journal.pone.0001672
- https://doi.org//10.1093/bioinformatics/16.8.707
- https://doi.org//10.1109/TCBB.2010.20
- https://doi.org//10.1105/tpc.104.021725
- https://doi.org//10.1016/j.tcs.2008.04.024
- https://doi.org//10.4024/2040402.jbpc.04.02
- https://doi.org//10.1038/nbt1356
- https://doi.org//10.1371/journal.pcbi.1005488
- https://doi.org//10.1093/bioinformatics/btn336
- https://doi.org//10.1016/j.biosystems.2016.12.004
- https://doi.org//10.1186/1471-2164-13-S6-S9
- https://doi.org//10.1371/journal.pone.0115806
- https://doi.org//10.1016/j.biosystems.2008.12.004
- https://doi.org//10.1142/S0219720009004448
- https://doi.org//10.1007/s001099900023
- https://doi.org//10.1016/j.aam.2006.08.004
- https://doi.org//10.1038/nrm2503
- https://doi.org//10.1038/224177a0
- https://doi.org//10.3389/fbioe.2015.00130
- https://doi.org//10.1105/tpc.111.092619
- https://doi.org//10.1023/A:1023905711304
- https://doi.org//10.1016/j.jtbi.2004.04.037
- https://doi.org//10.1039/C0MB00263A
- https://doi.org//10.1073/pnas.0305937101
- https://doi.org//10.1186/1471-2105-8-S6-S5
- https://doi.org//10.1142/S0219720007002850
- https://doi.org//10.1016/j.biosystems.2005.10.004
- https://doi.org//10.1006/jtbi.1998.0701
- https://doi.org//10.1093/bioinformatics/15.7.593
- https://doi.org//10.1103/PhysRevLett.119.028301
- https://doi.org//10.1016/j.biosystems.2016.07.009
- https://doi.org//10.1093/bioinformatics/bti664
- https://doi.org//10.1371/journal.pone.0024651
- https://doi.org//10.1007/978-3-319-07953-0_19
- https://doi.org//10.1016/j.dam.2017.01.001
- https://doi.org//10.1016/j.jtbi.2010.07.022
- https://doi.org//10.1038/msb.2009.87
- https://doi.org//10.1196/annals.1407.021
- https://doi.org//10.1137/110828794
- https://doi.org//10.1186/s12859-015-0498-z
Usage metrics
Read the peer-reviewed publication
Categories
- Gene and Molecular Therapy
- Biomarkers
- Genetics
- Genetically Modified Animals
- Developmental Genetics (incl. Sex Determination)
- Epigenetics (incl. Genome Methylation and Epigenomics)
- Gene Expression (incl. Microarray and other genome-wide approaches)
- Livestock Cloning
- Genome Structure and Regulation
- Genetic Engineering
- Genomics