video2_A Possible Roll-Over Slab Geometry Under the Caroline Plate Imaged by Monte Carlo Finite-Frequency Traveltime Inversion of Teleseismic SS Phases.mp4
The shape of a subducting slab varies as a function of trench motion. Two end-members of subduction modes are geodynamically possible: roll-back mode underneath neighboring plates and roll-over mode underneath the plate itself. Whereas most of major slabs seem to roll back while the Pacific plate shows a slab piling behavior down to ∼1,000 km depth under the Mariana trench, no clear evidence of slab roll-over in nature has been reported so far. Here we show a possible roll-over slab beneath the Caroline microplate, revealed from its three-dimensional seismic velocity structure derived by analyzing teleseismic reverberating SS phases. We suggest that slab roll-over is driven by at least two factors: 1) the overall buoyancy and fragility of the Caroline microplate at the surface, induced by a thin hot mantle plume that rises from depths ≥800 km; and 2) the pushing force of the Pacific plate acting on the trailing edge of the Caroline plate.
History
References
- https://doi.org//10.1146/annurev-earth-040809-152540
- https://doi.org//10.1002/2014GC005627
- https://doi.org//10.1093/gji/ggw356
- https://doi.org//10.1038/ncomms10799
- https://doi.org//10.1016/0012-821x(96)00023-4
- https://doi.org//10.1029/tc006i001p00053
- https://doi.org//10.1016/j.epsl.2019.05.040
- https://doi.org//10.1016/0031-9201(81)90046-7
- https://doi.org//10.1111/j.1365-246x.1975.tb00631.x
- https://doi.org//10.1029/2003eo470001
- https://doi.org//10.1038/nature14876
- https://doi.org//10.1111/j.1365-246x.2012.05495.x
- https://doi.org//10.5281/zenodo.439651
- https://doi.org//10.1002/2013jb010466
- https://doi.org//10.1016/j.earscirev.2007.04.004
- https://doi.org//10.1038/ngeo2733
- https://doi.org//10.1111/j.1365-246x.1995.tb06865.x
- https://doi.org//10.1111/j.1365-246x.1994.tb01807.x
- https://doi.org//10.1093/gji/ggz394
- https://doi.org//10.1029/2005jb004066
- https://doi.org//10.1002/2017gc007199
- https://doi.org//10.1093/gji/ggw450
- https://doi.org//10.1029/2019jb018089
- https://doi.org//10.1093/gji/ggu288
- https://doi.org//10.1029/2007tc002212
- https://doi.org//10.1016/j.epsl.2007.08.030
- https://doi.org//10.1038/ncomms6095
- https://doi.org//10.1002/2017JB015004
- https://doi.org//10.1029/2009eo280003
- https://doi.org//10.1029/2007gc001743
- https://doi.org//10.1016/j.epsl.2016.08.016
- https://doi.org//10.1029/2017gl076953
- https://doi.org//10.1111/j.1365-246X.2005.02508.x
- https://doi.org//10.1029/gl016i009p01059
- https://doi.org//10.1016/s0012-821x(04)00070-6
- https://doi.org//10.1029/2011gl048197
- https://doi.org//10.1016/j.epsl.2004.12.019
- https://doi.org//10.1029/2007GC001656
- https://doi.org//10.1016/j.tecto.2009.08.041
- https://doi.org//10.1016/j.tecto.2009.08.026
- https://doi.org//10.1046/j.1365-246x.1998.00447.x
- https://doi.org//10.1016/j.tecto.2007.08.003
- https://doi.org//10.1016/0012-821x(78)90004-3
- https://doi.org//10.1016/s0012-821x(99)00216-2
- https://doi.org//10.2973/dsdp.proc.7.1971
- https://doi.org//10.1002/2016jb012923
Usage metrics
Read the peer-reviewed publication
Categories
- Solid Earth Sciences
- Climate Science
- Evolutionary Impacts of Climate Change
- Atmospheric Sciences not elsewhere classified
- Exploration Geochemistry
- Inorganic Geochemistry
- Isotope Geochemistry
- Organic Geochemistry
- Geochemistry not elsewhere classified
- Igneous and Metamorphic Petrology
- Ore Deposit Petrology
- Palaeontology (incl. Palynology)
- Structural Geology
- Tectonics
- Volcanology
- Geology not elsewhere classified
- Seismology and Seismic Exploration
- Glaciology
- Hydrogeology
- Natural Hazards
- Quaternary Environments
- Earth Sciences not elsewhere classified